These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 4311521)

  • 1. UDP-glucose:glycogen alpha-4-glucosyltransferase I kinase activity of purified muscle protein kinase. Cyclic nucleotide specificity.
    Schlender KK; Wei SH; Villar-Palasi C
    Biochim Biophys Acta; 1969 Nov; 191(2):272-8. PubMed ID: 4311521
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of skeletal muscle phosphorylase phosphatase activity. I. Kinetic properties of the active and inactive forms.
    Torres HN; Chelala CA
    Biochim Biophys Acta; 1970 Mar; 198(3):495-503. PubMed ID: 4314234
    [No Abstract]   [Full Text] [Related]  

  • 3. Inactivation of rat liver glycogen synthetase by 3':5'-cyclic nucleotides.
    Glinsmann WH; Hern EP
    Biochem Biophys Res Commun; 1969 Sep; 36(6):931-6. PubMed ID: 4310149
    [No Abstract]   [Full Text] [Related]  

  • 4. The receptor protein for cyclic AMP in the control of glycogenolysis.
    Walsh DA; Krebs EG; Reimann EM; Brostrom MA; Corbin JD; Hickenbottom JP; Soderling TR; Perkins JP
    Adv Biochem Psychopharmacol; 1970; 3():265-85. PubMed ID: 4331459
    [No Abstract]   [Full Text] [Related]  

  • 5. Regulation of skeletal muscle phosphorylase phosphatase activity. II. Interconversions.
    Chelala CA; Torres HN
    Biochim Biophys Acta; 1970 Mar; 198(3):504-13. PubMed ID: 4314235
    [No Abstract]   [Full Text] [Related]  

  • 6. Loss of cyclic 3'5'-AMP dependent kinase and reduction of phosphorylase kinase in skeletal muscle of a girl with deactivated phosphorylase and glycogenosis of liver and muscle.
    Hug G; Schubert WK; Chuck G
    Biochem Biophys Res Commun; 1970 Aug; 40(4):982-8. PubMed ID: 4322108
    [No Abstract]   [Full Text] [Related]  

  • 7. Nucleotide activation of phosphorylase b in the presence and absence of salmine.
    Mott DM; Bieber AL
    Biochem Biophys Res Commun; 1968 Feb; 30(4):363-7. PubMed ID: 5694234
    [No Abstract]   [Full Text] [Related]  

  • 8. Allosteric properties of glutaraldehyde-modified glycogen phosphorylase b. Selective desensitization of homotropic cooperativity.
    Wang JH; Tu JI
    J Biol Chem; 1970 Jan; 245(1):176-82. PubMed ID: 4312475
    [No Abstract]   [Full Text] [Related]  

  • 9. An adenosine 3',5'-monophosphate-dependant protein kinase from rabbit skeletal muscle.
    Walsh DA; Perkins JP; Krebs EG
    J Biol Chem; 1968 Jul; 243(13):3763-5. PubMed ID: 4298072
    [No Abstract]   [Full Text] [Related]  

  • 10. The influence of allosteric effectors on the conversion of phosphorylase-b.
    Bot G; Kovács EF; Pólyik EN
    Acta Biochim Biophys Acad Sci Hung; 1970; 5(1):9-18. PubMed ID: 5492427
    [No Abstract]   [Full Text] [Related]  

  • 11. Molecular characteristics of the totally dependent and independent forms of glycogen synthase of rabbit skeletal muscle. I. Preparation and characteristics of the totally glucose 6-phosphate dependent form.
    Brown NE; Larner J
    Biochim Biophys Acta; 1971 Jul; 242(1):69-80. PubMed ID: 4330627
    [No Abstract]   [Full Text] [Related]  

  • 12. Cyclic AMP-stimulated protein kinase prepared from bovine thyroid glands.
    Yamashita K; Field JB
    Metabolism; 1972 Feb; 21(2):150-8. PubMed ID: 4333161
    [No Abstract]   [Full Text] [Related]  

  • 13. Distinct AMP binding sites in glycogen phosphorylase b as revealed by calorimetric studies.
    Wang JH; Kwok SC; Wirch E; Suzuki I
    Biochem Biophys Res Commun; 1970 Sep; 40(6):1340-7. PubMed ID: 5534872
    [No Abstract]   [Full Text] [Related]  

  • 14. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom.
    Kuo JF; Greengard P
    Proc Natl Acad Sci U S A; 1969 Dec; 64(4):1349-55. PubMed ID: 4393915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further studies on the properties of the rabbit reticulocyte adenosine 3',5'-cyclic monophosphate-dependent protein kinase I.
    Tao M
    Arch Biochem Biophys; 1971 Mar; 143(1):151-7. PubMed ID: 4327235
    [No Abstract]   [Full Text] [Related]  

  • 16. Molecular orbital calculations on the conformation of nucleic acids and their constituents. I. Conformational energies of beta-nucleosides with C(3')-and C(2')-endo sugars.
    Berthod H; Pullman B
    Biochim Biophys Acta; 1971 Apr; 232(4):595-606. PubMed ID: 4326669
    [No Abstract]   [Full Text] [Related]  

  • 17. Cyclic adenosine monophosphate as a mediator of hormone action.
    Liddle GW; Hardman JG
    N Engl J Med; 1971 Sep; 285(10):560-6. PubMed ID: 4327105
    [No Abstract]   [Full Text] [Related]  

  • 18. Control of phosphorylase activity in a muscle glycogen particle. IV. Activation of phosphorylase by nucleotides and phosphorylation.
    Haschke RH; Grätz KW; Heilmeyer LM
    J Biol Chem; 1972 Sep; 247(17):5351-6. PubMed ID: 5055771
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural specificity of the adenosine 5'-phosphate site on glycogen phosphorylase b.
    Mott DM; Bieber AL
    J Biol Chem; 1970 Aug; 245(16):4058-66. PubMed ID: 5496992
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the interaction between regulatory enzymes and effectors. II. Effect of adenosine 5'-monophosphate analogues on glycogen phosphorylase B.
    Okazaki T; Nakazawa A; Hayaishi O
    J Biol Chem; 1968 Oct; 243(20):5266-71. PubMed ID: 5702046
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.