These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 4312459)

  • 1. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Conformational changes in tryptophanyl and tryptophan transfer ribonucleic acids.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4880-8. PubMed ID: 4312459
    [No Abstract]   [Full Text] [Related]  

  • 2. Chloroquine and synthesis of aminoacyl transfer ribonucleic acids. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli and tryptophanyladenosine triphosphate formation.
    Muench KH
    Biochemistry; 1969 Dec; 8(12):4872-9. PubMed ID: 4312458
    [No Abstract]   [Full Text] [Related]  

  • 3. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli. I. Purification of the enzyme and of tryptrophan transfer ribonucleic acid.
    Joseph DR; Muench KH
    J Biol Chem; 1971 Dec; 246(24):7602-9. PubMed ID: 4332555
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis of peptidyl aminoacyl transfer RNA: a chemical method for the purification of transfer RNA's.
    Littauer UZ; Yankofsky SA; Novogrodsky A; Bursztyn H; Galenter Y; Katchalski E
    Biochim Biophys Acta; 1969 Nov; 195(1):29-49. PubMed ID: 4901836
    [No Abstract]   [Full Text] [Related]  

  • 5. Metal ion-nucleic acid interactions. I. A method for the fractionation of rat liver ribonucleic acids into transfer ribonucleic acid and ribosomal ribonucleic acids using Zn-II as a precipitant.
    Raj NB; Rao MS
    Biochemistry; 1969 Mar; 8(3):1277-84. PubMed ID: 4976405
    [No Abstract]   [Full Text] [Related]  

  • 6. The interconvertibility of various bacterial transfer ribonucleic acids between an active and an inactive stable configuration.
    Ishida T; Snyder D; Sueoka N
    J Biol Chem; 1971 Oct; 246(19):5965-9. PubMed ID: 5000606
    [No Abstract]   [Full Text] [Related]  

  • 7. Isolation and some properties of methionine transfer ribonucleic acid from Escherichia coli.
    Schofield P
    Biochemistry; 1970 Apr; 9(8):1694-700. PubMed ID: 4909079
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzymatic hydrolysis of N-substituted aminoacyl transfer ribonucleic acid in yeast.
    Jost JP; Bock RM
    J Biol Chem; 1969 Nov; 244(21):5866-73. PubMed ID: 4981785
    [No Abstract]   [Full Text] [Related]  

  • 9. Studies on 5-fluorouracil-containing ribonucleic acid. I. Separation and partial characterization of fluorouracil-containing transfer ribonucleic acids from Escherichia coli.
    Kaiser II
    Biochemistry; 1969 Jan; 8(1):231-8. PubMed ID: 4887853
    [No Abstract]   [Full Text] [Related]  

  • 10. Structural properties of 5-fluorouracil-containing transfer ribonucleic acids from Escherichia coli.
    Kaiser II
    Biochemistry; 1971 Apr; 10(9):1540-5. PubMed ID: 4931747
    [No Abstract]   [Full Text] [Related]  

  • 11. Chloroquine-mediated conversion of transfer ribonucleic acid of Escherichia coli from an inactive to an active state.
    Muench KH
    Cold Spring Harb Symp Quant Biol; 1966; 31():539-42. PubMed ID: 4966073
    [No Abstract]   [Full Text] [Related]  

  • 12. Tryptophanyl transfer ribonucleic acid synthetase from bovine pancreas. 3. A complex of tryptophanyl transfer ribonucleic acid synthetase and transfer ribonucleic acid that accepts tryptophan: the purification of 32 P-tryptophan transfer ribonucleic acid.
    Preddie EC
    J Biol Chem; 1969 Jul; 244(14):3969-72. PubMed ID: 4896486
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis of oligodeoxyribonucleotide ethyl phosphotriesters and their specific complex formation with transfer ribonucleic acid.
    Miller PS; Barrett JC; Ts'o PO
    Biochemistry; 1974 Nov; 13(24):4887-96. PubMed ID: 4215448
    [No Abstract]   [Full Text] [Related]  

  • 14. Purification of leucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Hayashi H; Knowles JR; Katze JR; Lapointe J; Söll D
    J Biol Chem; 1970 Mar; 245(6):1401-6. PubMed ID: 4986473
    [No Abstract]   [Full Text] [Related]  

  • 15. Evidence for one leucyl transfer ribonucleic acid synthetase with specificity for leucine transfer ribonucleic acids with different coding characteristics.
    Bennett TP
    J Biol Chem; 1969 Jun; 244(12):3182-7. PubMed ID: 4893339
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of ambient conditions on conformations of tryptophan transfer ribonucleic acid of Escherichia coli.
    Ishida T; Sueoka N
    J Biol Chem; 1968 Oct; 243(20):5329-36. PubMed ID: 4883094
    [No Abstract]   [Full Text] [Related]  

  • 17. Further evidence for a single leucyl transfer ribonucleic acid synthetase capable of charging five leucine transfer ribonucleic acids in Escherichia coli.
    Kan J; Sueoka N
    J Biol Chem; 1971 Apr; 246(7):2207-10. PubMed ID: 4324563
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of an intramolecular cross-link on reversible denaturation in tryptophan transfer ribonucleic acid from Escherichia coli.
    Buckingham RH; Danchin A; Grunberg-Manago M
    Biochemistry; 1973 Dec; 12(26):5393-9. PubMed ID: 4586519
    [No Abstract]   [Full Text] [Related]  

  • 19. Conformational changes of transfer ribonucleic acid. The pH phase diagram under acidic conditions.
    Bina-Stein M; Crothers DM
    Biochemistry; 1974 Jun; 13(13):2771-5. PubMed ID: 4603218
    [No Abstract]   [Full Text] [Related]  

  • 20. Transfer ribonucleic acids in Escherichia coli. Multiplicity and variation.
    Muench KH; Safille PA
    Biochemistry; 1968 Aug; 7(8):2799-808. PubMed ID: 4299084
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.