BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 4313077)

  • 1. Enzyme-substrate kinetics associated with transient state conditions in single living cells.
    Kohen E; Kohen C; Thorell B
    Biochim Biophys Acta; 1970 Jan; 198(1):1-11. PubMed ID: 4313077
    [No Abstract]   [Full Text] [Related]  

  • 2. [Intermediate steps of anaerobic cleavage of carbohydrates in human thrombocytes].
    Cherniak NB; Timofeeva LM
    Biokhimiia; 1967; 32(5):926-32. PubMed ID: 4300423
    [No Abstract]   [Full Text] [Related]  

  • 3. The effect of oxamate on glycolysis in intact ascites tumor cells. I. Kinetic evidence for a dual glycolytic system.
    Coe EL; Strunk RC
    Biochim Biophys Acta; 1970 May; 208(2):189-202. PubMed ID: 5463330
    [No Abstract]   [Full Text] [Related]  

  • 4. Control of gluconeogenesis in liver. 3. Effects of L-lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3',5'-monophosphate on gluconeogenic intermediates in the perfused rat liver.
    Exton JH; Park CR
    J Biol Chem; 1969 Mar; 244(6):1424-33. PubMed ID: 4304225
    [No Abstract]   [Full Text] [Related]  

  • 5. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver.
    Veech RL; Raijman L; Krebs HA
    Biochem J; 1970 Apr; 117(3):499-503. PubMed ID: 4315932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Glycolysis and the activity of some enzymes in erythrocytes from patients with Marchiafava-Micheli disease].
    Cherniak NB; Asriian IS
    Vopr Med Khim; 1968; 14(1):54-7. PubMed ID: 5683371
    [No Abstract]   [Full Text] [Related]  

  • 7. GLYCOLYSIS IN ONISCUS ASELLUS.
    HARTENSTEIN R
    Enzymologia; 1964 Jun; 27():113-28. PubMed ID: 14201353
    [No Abstract]   [Full Text] [Related]  

  • 8. The regulation of glycolysis in mammalian erythrocytes.
    Rapoport S
    Essays Biochem; 1968; 4():69-103. PubMed ID: 4308730
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of adenine ring and adenine ribose of nicotinamide adenine dinucleotide in binding and catalysis with alcohol, lactate, and glyceraldehyde-3-phosphate dehydrogenases.
    Suhadolnik RJ; Lennon MB; Uematsu T; Monahan JE; Baur R
    J Biol Chem; 1977 Jun; 252(12):4125-33. PubMed ID: 193857
    [No Abstract]   [Full Text] [Related]  

  • 10. THE ROLE OF PI IN THE CONTROL OF GLYCOLYSIS IN ASCITES TUMOR CELLS.
    WU R
    Biochem Biophys Res Commun; 1965 Feb; 18():402-8. PubMed ID: 14300756
    [No Abstract]   [Full Text] [Related]  

  • 11. Correlations between adenine nucleotide levels and the velocities of rate-determining steps in the glycolysis and respiration of intact Ehrlich ascites carcinoma cells.
    Coe EL
    Biochim Biophys Acta; 1966 Jun; 118(3):495-511. PubMed ID: 4291240
    [No Abstract]   [Full Text] [Related]  

  • 12. On the physiological significance of positive and negative cooperativity in enzymes.
    Friedrich P
    J Theor Biol; 1979 Dec; 81(3):527-32. PubMed ID: 231712
    [No Abstract]   [Full Text] [Related]  

  • 13. Interaction of NAD-dependent dehydrogenases with human erythrocyte membranes. Evidence that D-glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase are catalytically active in a membrane-bound state.
    Muronetz VI; Shcherbatova NA; Nagradova NK
    Appl Biochem Biotechnol; 1996; 61(1-2):39-46. PubMed ID: 9100343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases.
    Kovár J; Klukanová H
    Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of glycolysis in human erythrocytes by inorganic phosphate and sulfate.
    Rizzo SC; Eckel RE
    Am J Physiol; 1966 Aug; 211(2):429-36. PubMed ID: 4224148
    [No Abstract]   [Full Text] [Related]  

  • 16. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolite content and enzyme permeability of isolated human blood cells without substrate and with addition of metabolic poisons].
    Englhardt A; Schmidt-Sodingen G; Lange H
    Enzymol Biol Clin (Basel); 1969; 10(4):258-80. PubMed ID: 4308959
    [No Abstract]   [Full Text] [Related]  

  • 18. The presence of NADPH-glyceraldehyde 3-phosphate oxidoreductase in macrophages.
    Ravid K; Lavie L; Gershon D
    FEBS Lett; 1983 Oct; 162(1):107-11. PubMed ID: 6617882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyridine nucleotides in erythrocyte metabolism.
    Gross RT; Schroeder EA; Gabrio BW
    J Clin Invest; 1966 Feb; 45(2):249-55. PubMed ID: 4379090
    [No Abstract]   [Full Text] [Related]  

  • 20. The regulatory function of potato pyruvate dehydrogenase.
    Crompton M; Laties GG
    Arch Biochem Biophys; 1971 Mar; 143(1):143-50. PubMed ID: 4327234
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.