These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4313077)

  • 41. Investigation of the conformation of lactate dehydrogenase and of its catalytic activity.
    Bolotina IA; Markovich DS; Volkenstein MV; Zavodzky P
    Biochim Biophys Acta; 1967 Mar; 132(2):271-81. PubMed ID: 4382211
    [No Abstract]   [Full Text] [Related]  

  • 42. [Increased activity of liver enzymes in patients with porphyria cutanea tarda].
    Rainer H; Imhof H; Schnack H
    Wien Klin Wochenschr; 1972 Nov; 84(45):732-3. PubMed ID: 4404501
    [No Abstract]   [Full Text] [Related]  

  • 43. On the mechanism of respiratory control.
    Butow RA; Racker E
    J Gen Physiol; 1965 Sep; 49(1):Suppl:149-62. PubMed ID: 4285726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Insulin secretion and NADH-fluorescence of isolated pancreatic islets].
    Panten U; Poser W; Hasselblatt A
    Naunyn Schmiedebergs Arch Pharmakol; 1970; 266(4):420-1. PubMed ID: 4326422
    [No Abstract]   [Full Text] [Related]  

  • 45. Kinetics of the extramitochondrial fluorescence response to glycolytic substrate in amytal-grown ascites cells.
    Kohen E; Kohen C; Thorell B
    Hoppe Seylers Z Physiol Chem; 1969 Mar; 350(3):297-307. PubMed ID: 5769957
    [No Abstract]   [Full Text] [Related]  

  • 46. Interaction between glyceraldehyde-3-phosphate-dehydrogenase and lactate dehydrogenase.
    Sukhodolets MV; Muronetz VI; Nagradova NK
    Biochem Int; 1989 Aug; 19(2):379-84. PubMed ID: 2818602
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A phosphate-stimulated NAD(P)+-dependent glyceraldehyde-3-phosphate dehydrogenase in Bacillus cereus.
    Iddar A; Serrano A; Soukri A
    FEMS Microbiol Lett; 2002 May; 211(1):29-35. PubMed ID: 12052547
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The redox state of NAD+-NADH systems in rat liver during ketosis, and the so-called "triosephosphate block".
    Söling HD; Kattermann R; Schmidt H; Kneer P
    Biochim Biophys Acta; 1966 Jan; 115(1):1-14. PubMed ID: 4286996
    [No Abstract]   [Full Text] [Related]  

  • 49. A role for nicotinamide adenine dinucleotide glycohydrolase in the control of glyceraldehyde-3-phosphate dehydrogenase activity.
    Green S; Dobrjansky A; Bodansky O
    Cancer Res; 1969 Aug; 29(8):1568-73. PubMed ID: 4308957
    [No Abstract]   [Full Text] [Related]  

  • 50. [Effect of erythrocyte membranes and tubulin on the activity of NAD-dependent dehydrogenases].
    Shcherbatova NA; Nagradova NK; Muronets VI
    Biokhimiia; 1996 Aug; 61(8):1512-25. PubMed ID: 8962925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermodynamic studies of the activation of rabbit muscle lactate dehydrogenase by phosphate.
    Ward LD; Winzor DJ
    Biochem J; 1983 Dec; 215(3):685-91. PubMed ID: 6661190
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The steadystate relaxation time and the product at equilibrium.
    Mueller DM; Henley KS; Hendelman LU; Gumucio JJ
    Biochim Biophys Acta; 1967 Jul; 139(2):231-7. PubMed ID: 6034670
    [No Abstract]   [Full Text] [Related]  

  • 53. [Localization of enzymes of energy metabolism in cross striated muscle].
    Brandau H; Pette D
    Enzymol Biol Clin (Basel); 1966; 6(2):123-56. PubMed ID: 5296873
    [No Abstract]   [Full Text] [Related]  

  • 54. Biochemical characterization of gapB-encoded erythrose 4-phosphate dehydrogenase of Escherichia coli K-12 and its possible role in pyridoxal 5'-phosphate biosynthesis.
    Zhao G; Pease AJ; Bharani N; Winkler ME
    J Bacteriol; 1995 May; 177(10):2804-12. PubMed ID: 7751290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Some mechanisms of carbohydrate metabolism regulation with NADP participation].
    Golovats'kiĭ ID; Kolotnits'kiĭ AG; Krasnevich AIa
    Ukr Biokhim Zh; 1977; 49(3):35-8. PubMed ID: 18829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of pH, ionic strength, and metabolic intermediates on the rates of heat inactivation of lactate dehydrogenase isozymes.
    Vesell ES; Yielding KL
    Proc Natl Acad Sci U S A; 1966 Oct; 56(4):1317-24. PubMed ID: 4291204
    [No Abstract]   [Full Text] [Related]  

  • 57. Purificationa and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis.
    Wittenberger CL; Angelo N
    J Bacteriol; 1970 Mar; 101(3):717-24. PubMed ID: 4314543
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [MODE OF ACTION OF LACTATE DEHYDROGENASES LINKED TO FLAVIN AND CYTOCHROME SYSTEMS].
    LABEYRIE F; SLONIMSKI PP
    Bull Soc Chim Biol (Paris); 1964; 46():1793-828. PubMed ID: 14270552
    [No Abstract]   [Full Text] [Related]  

  • 59. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
    Williamson DH; Lund P; Krebs HA
    Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Double inhibition of D-glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase.
    Lien LV; Ecsedi G; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1979; 14(1-2):11-7. PubMed ID: 517106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.