These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 4314540)

  • 1. A paramagnetic monomeric molybdenum(V)-cysteine complex as a model for molybdenum-enzyme interaction.
    Huang TJ; Haight GP
    J Am Chem Soc; 1970 Apr; 92(8):2336-42. PubMed ID: 4314540
    [No Abstract]   [Full Text] [Related]  

  • 2. Chemical systems modeling the d
    Young CG
    J Inorg Biochem; 2016 Sep; 162():238-252. PubMed ID: 27432259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid type 2 molybdenum(V) electron-paramagnetic resonance signals from xanthine oxidase and the structure of the active centre of the enzyme.
    Malthouse JP; Gutteridge S; Bray RC
    Biochem J; 1980 Mar; 185(3):767-70. PubMed ID: 6248034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state.
    Barber MJ; Siegel LM
    Biochemistry; 1983 Feb; 22(3):618-24. PubMed ID: 6301524
    [No Abstract]   [Full Text] [Related]  

  • 5. Magnetic coupling of the molybdenum and iron-sulphur centres in xanthine oxidase and xanthine dehydrogenases.
    Lowe DJ; Bray RC
    Biochem J; 1978 Mar; 169(3):471-9. PubMed ID: 25647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Letter: Monomeric molybdenum (V) complexes showing hydrogen-1, hydrogen-2, and nitrogen-14 superhyperfine splitting in their electron paramagnetic resonance spectra. Implications for molybdenum enzymes.
    Pariyadath N; Newton WE; Stiefel EI
    J Am Chem Soc; 1976 Aug; 98(17):5388-90. PubMed ID: 182733
    [No Abstract]   [Full Text] [Related]  

  • 7. The mechanism of action of xanthine oxidase. The relationship between the rapid and very rapid molybdenum electron-paramagnetic-resonance signals.
    Bray RC; Gutteridge S; Stotter DA; Tanner SJ
    Biochem J; 1979 Jan; 177(1):357-60. PubMed ID: 218562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron-paramagnetic-resonance parameters of molybdenum(V) in sulphite oxidase from chicken liver.
    Lamy MT; Gutteridge S; Bary RC
    Biochem J; 1980 Feb; 185(2):397-403. PubMed ID: 6249254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase.
    Barber MJ; Bray RC; Lowe DJ; Coughlan MP
    Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II.
    Caldeira J; Belle V; Asso M; Guigliarelli B; Moura I; Moura JJ; Bertrand P
    Biochemistry; 2000 Mar; 39(10):2700-7. PubMed ID: 10704221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies by electron-paramagnetic-resonance spectroscopy of the molybdenum centre of aldehyde oxidase.
    Bray RC; George GN; Gutteridge S; Norlander L; Stell JG; Stubley C
    Biochem J; 1982 Apr; 203(1):263-7. PubMed ID: 6285895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies on the substrate reduction of xanthine oxidase.
    Edmondson D; Ballou D; Van Heuvelen A; Palmer G; Massey V
    J Biol Chem; 1973 Sep; 248(17):6135-44. PubMed ID: 4353632
    [No Abstract]   [Full Text] [Related]  

  • 13. DIRECT STUDIES ON THE ELECTRON TRANSFER SEQUENCE IN XANTHINE OXIDASE BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. II. KINETIC STUDIES EMPLOYING RAPID FREEZING.
    BRAY RC; PALMER G; BEINERT H
    J Biol Chem; 1964 Aug; 239():2667-76. PubMed ID: 14235551
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies by electron-paramagnetic-resonance spectroscopy on the mechanism of action of xanthine dehydrogenase from Veillonella alcalescens.
    Dalton H; Lowe DJ; Pawlik T; Bray RC
    Biochem J; 1976 Feb; 153(2):287-95. PubMed ID: 179532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies by electron paramagnetic resonance spectroscopy of xanthine oxidase enriched with molybdenum-95 and with molybdenum-97.
    George GN; Bray RC
    Biochemistry; 1988 May; 27(10):3603-9. PubMed ID: 2841971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies by electron-paramagnetic-resonance spectroscopy of the environment of the metal in the molybdenum cofactor of molybdenum-containing enzymes.
    Hawkes TR; Bray RC
    Biochem J; 1984 Sep; 222(3):587-600. PubMed ID: 6091619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model studies for molybdenum enzymes. Reduction of flavines by mu-oxo-bis(oxodihydroxo(L-cysteinato)molybdate(V)).
    Kroneck P; Spence JT
    Biochemistry; 1973 Nov; 12(24):5020-4. PubMed ID: 4357555
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduction of flavins by molybdenum(V).
    Colovos G; Spence JT
    Biochemistry; 1972 Jun; 11(13):2542-6. PubMed ID: 4339246
    [No Abstract]   [Full Text] [Related]  

  • 19. "Rapidly appearing" molybdenum electron-paramagnetic-resonance signals from reduced xanthine oxidase.
    Bray RC; Vänngård T
    Biochem J; 1969 Oct; 114(4):725-34. PubMed ID: 4310055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xanthine Oxidase-A Personal History.
    Hille R
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.