BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 4314765)

  • 21. Titrations with ferrocyanide of japanese-lacquer-tree (Rhus vernicifera) laccase and of the type 2 copper-depleted enzyme. Interrelation of the copper sites.
    Morpurgo L; Graziani MT; Desideri A; Rotilio G
    Biochem J; 1980 May; 187(2):367-70. PubMed ID: 6446907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the nature of copper in two proteins obtained from Rhus vernicifera latex.
    Blumberg WE; Levine WG; Margolis S; Peisach J
    Biochem Biophys Res Commun; 1964 Mar; 15(3):277-83. PubMed ID: 4284280
    [No Abstract]   [Full Text] [Related]  

  • 23. Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase.
    Spira DJ; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):729-36. PubMed ID: 6303331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Parsley plastocyanin. The possible presence of sulfhydryl and tyrosine in the copper environment.
    Graziani MT; Agrò AF; Rotilio G; Barra D; Mondovi B
    Biochemistry; 1974 Feb; 13(4):804-9. PubMed ID: 4359466
    [No Abstract]   [Full Text] [Related]  

  • 25. Stereochemistry of anion complexes of type 2 Cu(II) in Rhus vernicifera laccase. Analogy with superoxide dismutase and Cu(II) carbonic anhydrase.
    Desideri A; Morpurgo L; Rotilio G; Mondovì B
    FEBS Lett; 1979 Feb; 98(2):339-41. PubMed ID: 217736
    [No Abstract]   [Full Text] [Related]  

  • 26. Spectroscopic differentiation of the electron-accepting sites in fungal laccase. Association of a near ultraviolet band with a two electron-accepting unit.
    Malkin R; Malmström BG; Vänngård T
    Eur J Biochem; 1969 Sep; 10(2):324-9. PubMed ID: 4309868
    [No Abstract]   [Full Text] [Related]  

  • 27. Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. VII. The isoelectric spectra of fungal laccase A and B.
    Jonsson M; Pettersson E; Reinhammar B
    Acta Chem Scand; 1968; 22(7):2135-40. PubMed ID: 4304175
    [No Abstract]   [Full Text] [Related]  

  • 28. Kinetics of reconstitutioin of polyphenoloxidase from apoenzyme and copper.
    Kertesz D; Rotilio G; Brunori M; Zito R; Antonini E
    Biochem Biophys Res Commun; 1972 Dec; 49(5):1208-15. PubMed ID: 4345671
    [No Abstract]   [Full Text] [Related]  

  • 29. A COMPARISON OF THE ENZYMIC ACTIVITIES OF PIG CERULOPLASMIN AND RHUS VERNICIFERA LACCASE.
    PEISACH J; LEVINE WG
    J Biol Chem; 1965 Jun; 240():2284-9. PubMed ID: 14304827
    [No Abstract]   [Full Text] [Related]  

  • 30. Alkaline transition of phytocyanins: a comparison of stellacyanin and umecyanin.
    Dennison C; Harrison MD; Lawler AT
    Biochem J; 2003 Apr; 371(Pt 2):377-83. PubMed ID: 12529171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physicochemical and kinetic properties of mushroom tyrosinase.
    Duckworth HW; Coleman JE
    J Biol Chem; 1970 Apr; 245(7):1613-25. PubMed ID: 4985615
    [No Abstract]   [Full Text] [Related]  

  • 32. The reversible removal of one specific copper(II) from fungal laccase.
    Malkin R; Malmström BG; Vänngård T
    Eur J Biochem; 1969 Jan; 7(2):253-9. PubMed ID: 4303912
    [No Abstract]   [Full Text] [Related]  

  • 33. The state and function of copper in biological systems.
    Malkin R; Malmström BG
    Adv Enzymol Relat Areas Mol Biol; 1970; 33():177-244. PubMed ID: 4318312
    [No Abstract]   [Full Text] [Related]  

  • 34. The effect of fluoride on the spectral and catalytic properties of the three copper-containing oxidases.
    Brändén R; Malmström BG; Vänngård T
    Eur J Biochem; 1973 Jul; 36(1):195-200. PubMed ID: 4354619
    [No Abstract]   [Full Text] [Related]  

  • 35. Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper.
    Reinhammar B; Oda Y
    J Inorg Biochem; 1979 Oct; 11(2):115-27. PubMed ID: 228004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparations and properties of apo- and reconstructed Rhus-laccases.
    Ando K
    J Biochem; 1970 Oct; 68(4):501-8. PubMed ID: 4321247
    [No Abstract]   [Full Text] [Related]  

  • 37. Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin.
    Reinhammar BR
    Biochim Biophys Acta; 1972 Aug; 275(2):245-59. PubMed ID: 4342730
    [No Abstract]   [Full Text] [Related]  

  • 38. Stability of Japanese-lacquer-tree (Rhus vernicifera) laccase to thermal and chemical denaturation: comparison with ascorbate oxidase.
    Agostinelli E; Cervoni L; Giartosio A; Morpurgo L
    Biochem J; 1995 Mar; 306 ( Pt 3)(Pt 3):697-702. PubMed ID: 7702562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. pH and microwave power effects on the electron spin resonance spectra of Rhus vernicifera laccase and Cucumis sativus ascorbate oxidase.
    Sakurai T; Suzuki S; Chikira M
    J Biochem; 1990 Jan; 107(1):37-42. PubMed ID: 2158983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EPR studies on the anaerobic reduction of fungal laccase. Evidence for participation of type 2 copper in the reduction mechanism.
    Brändén R; Reinhammar B
    Biochim Biophys Acta; 1975 Oct; 405(2):236-42. PubMed ID: 241411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.