These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 4315007)
41. Isolation and characterization of hyaluronidase from Streptococcus uberis. Schaufuss P; Sting R; Schaeg W; Blobel H Zentralbl Bakteriol; 1989 May; 271(1):46-53. PubMed ID: 2765091 [TBL] [Abstract][Full Text] [Related]
42. [Role of individual lysine residues of horse cytochrome c in the formation of reactive complexes with components of the respiratory chain]. Pepelina TIu; Chertkova RV; Dolgikh DA; Kirpichnikov MP Bioorg Khim; 2010; 36(1):98-104. PubMed ID: 20386582 [TBL] [Abstract][Full Text] [Related]
43. Kinetics of the cytochrome c oxidase and reductase reactions in energized and de-energized mitochondria. Petersen LC; Degn H; Nicholls P Can J Biochem; 1977 Jul; 55(7):706-13. PubMed ID: 196723 [No Abstract] [Full Text] [Related]
44. The kinetics of electron entry in cytochrome c oxidase. Malatesta F; Antonini G; Sarti P; Vallone B; Brunori M Biol Met; 1990; 3(2):118-21. PubMed ID: 1965780 [TBL] [Abstract][Full Text] [Related]
45. A program for calculation of intrapulmonary shunts, blood-gas and acid-base values with a programmable calculator. Ruiz BC; Tucker WK; Kirby RR Anesthesiology; 1975 Jan; 42(1):88-95. PubMed ID: 234212 [TBL] [Abstract][Full Text] [Related]
46. Estimation of lipid regions in a cytochrome oxidase-lipid complex using spin labeling electron spin resonance: distribution effects on the spin label. Benga G; Porumb T; Wrigglesworth JM J Bioenerg Biomembr; 1981 Dec; 13(5-6):269-83. PubMed ID: 6277883 [TBL] [Abstract][Full Text] [Related]
47. On functional role of cytochrome b5. I. NADH-linked cytochrome c reductase in microsomes. Hara T; Minakami S J Biochem; 1971 Feb; 69(2):317-24. PubMed ID: 4323882 [No Abstract] [Full Text] [Related]
48. The reaction of Pseudomonas aeruginosa cytochrome c oxidase with carbon monoxide. Parr SR; Wilson MT; Greenwood C Biochem J; 1975 Oct; 151(1):51-9. PubMed ID: 174556 [TBL] [Abstract][Full Text] [Related]
49. Comparative kinetic studies of cytochromes c in reactions with mitochondrial cytochrome c oxidase and reductase. Errede B; Kamen MD Biochemistry; 1978 Mar; 17(6):1015-27. PubMed ID: 204337 [TBL] [Abstract][Full Text] [Related]
50. Isolation, properties, immunological specificity and localization of mouse testicular hyaluronidase. Gupta GS; Goldberg E Biochim Biophys Acta; 1981 Feb; 657(2):364-73. PubMed ID: 6163467 [TBL] [Abstract][Full Text] [Related]
51. Investigation of aminomethyl indole derivatives as hyaluronidase inhibitors. Olgen S; Kaessler A; Kiliç-Kurt Z; Jose J Z Naturforsch C J Biosci; 2010; 65(7-8):445-50. PubMed ID: 20737912 [TBL] [Abstract][Full Text] [Related]
52. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471 [TBL] [Abstract][Full Text] [Related]
53. Microcomputers in enzymology. A versatile BASIC computer program for analyzing kinetic data. Knack I; Röhm KH Hoppe Seylers Z Physiol Chem; 1981 Aug; 362(8):1119-30. PubMed ID: 7049886 [TBL] [Abstract][Full Text] [Related]
54. A computer program for deriving the rate equations of enzyme catalysed reactions with unbranched mechanisms. Kinderlerer J; Ainsworth S Int J Biomed Comput; 1975 Oct; 6(4):293-7. PubMed ID: 1213860 [TBL] [Abstract][Full Text] [Related]
55. Effects of female sex hormones on the activity of serum hyaluronidase. Khoja SM FEBS Lett; 1988 Jan; 226(2):220-2. PubMed ID: 3338552 [TBL] [Abstract][Full Text] [Related]
56. Strongyloides ratti: mitochondrial enzyme activities of the classical electron transport pathway in the infective (L3) larvae. Armson A; Grubb WB; Mendis AH Int J Parasitol; 1995 Feb; 25(2):257-60. PubMed ID: 7622333 [TBL] [Abstract][Full Text] [Related]
57. The bioelectrode, a new concept explaining the reaction mechanism of beef heart cytochrome c reductase. Hultin E; Paléus S; Tota B; Liljeqvist G Acta Chem Scand; 1969; 23(10):3417-25. PubMed ID: 4315006 [No Abstract] [Full Text] [Related]
58. Cytochrome c oxidase: biphasic kinetics result from incomplete reduction of cytochrome a by cytochrome c bound to the high-affinity site. Ortega-Lopez J; Robinson NC Biochemistry; 1995 Aug; 34(31):10000-8. PubMed ID: 7632672 [TBL] [Abstract][Full Text] [Related]
59. Intracellular localization of enzymes in spleen. I. Reduced diphosphopyridine nucleotide cytochrome c reductase, cytochrome c oxidase, and succinic dehydrogenase in the rat and guinea pig. EICHEL HJ J Biophys Biochem Cytol; 1957 May; 3(3):397-412. PubMed ID: 13438924 [TBL] [Abstract][Full Text] [Related]
60. Intramolecular and intracomplex electron transfer in redox proteins. Cusanovich MA; Hazzard JT; Meyer TE; Tollin G Prog Clin Biol Res; 1988; 274():401-18. PubMed ID: 2841675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]