BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4315152)

  • 1. Metabolic interlock. The influence of histidine on tryptophan biosynthesis in Bacillus subtilis.
    Kane JF; Jensen RA
    J Biol Chem; 1970 May; 245(9):2384-90. PubMed ID: 4315152
    [No Abstract]   [Full Text] [Related]  

  • 2. Enzyme induction in the tryptophan biosynthetic pathway in Bacillus subtilis.
    Kane JF; Jensen RA
    Biochem Biophys Res Commun; 1970 Mar; 38(6):1161-7. PubMed ID: 4985442
    [No Abstract]   [Full Text] [Related]  

  • 3. The molecular aggregation of anthranilate synthase in Bacillus subtilis.
    Kane JF; Jensen RA
    Biochem Biophys Res Commun; 1970 Oct; 41(2):328-33. PubMed ID: 4996435
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic interlock. The dual function of a folate pathway gene as an extra-operonic gene of tryptophan biosynthesis.
    Kane JF; Holmes WM; Jensen RA
    J Biol Chem; 1972 Mar; 247(5):1587-96. PubMed ID: 4622231
    [No Abstract]   [Full Text] [Related]  

  • 5. Antimetabolite action of 5-methyltryptophan in Bacillus subtilis.
    Jensen RA
    J Bacteriol; 1969 Mar; 97(3):1500-1. PubMed ID: 4975752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic interlock. The role of the subordinate type of enzyme in the regulation of a complex pathway.
    Kane JF; Stenmark SL; Calhoun DH; Jensen RA
    J Biol Chem; 1971 Jul; 246(13):4308-16. PubMed ID: 4996881
    [No Abstract]   [Full Text] [Related]  

  • 7. The anthranilate synthetase-anthranilate-5-phosphorribosylpyrophosphate phosphoribosyltransferase aggregate. On the reaction mechanism of anthranilate synthetase from Salmonella typhimurium.
    Nagano H; Zalkin H; Henderson EJ
    J Biol Chem; 1970 Aug; 245(15):3810-20. PubMed ID: 4321766
    [No Abstract]   [Full Text] [Related]  

  • 8. Common element in the repression control of enzymes of histidine and aromatic amino acid biosynthesis in Bacillus subtilus.
    Chapman LF; Nester EW
    J Bacteriol; 1968 Nov; 96(5):1658-63. PubMed ID: 4973128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophan-mediated substrate inhibition of anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase.
    Zalkin H; Henderson EJ
    Biochem Biophys Res Commun; 1969 Apr; 35(1):52-8. PubMed ID: 4305273
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulated enzymes of aromatic amino acid synthesis: control, isozymic nature, and aggregation in Bacillus subtilis and Bacillus licheniformis.
    Nasser D; Henderson G; Nester EW
    J Bacteriol; 1969 Apr; 98(1):44-50. PubMed ID: 4977689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for the separability of the operator from the first structural gene in the tryptophan operon of Salmonella typhimurium.
    Cordaro JC; Balbinder E
    Genetics; 1971 Feb; 67(2):151-69. PubMed ID: 4936358
    [No Abstract]   [Full Text] [Related]  

  • 12. The anthranilate synthetase-anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase aggregate. Purification of the aggregate and regulatory properties of anthranilate synthetase.
    Henderson EJ; Nagano H; Zalkin H; Hwang LH
    J Biol Chem; 1970 Mar; 245(6):1416-23. PubMed ID: 4315598
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of glutamine synthetase from Bacillus subtilis by divalent cations, feedback inhibitors, and L-glutamine.
    Deuel TF; Prusiner S
    J Biol Chem; 1974 Jan; 249(1):257-64. PubMed ID: 4149044
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolic interlock. Regulatory interactions exerted between biochemical pathways.
    Jensen RA
    J Biol Chem; 1969 Jun; 244(11):2816-23. PubMed ID: 4306282
    [No Abstract]   [Full Text] [Related]  

  • 15. Anthranilate synthetase of Acinetobacter calcoaceticus. Separation and partial characterization of subunits.
    Sawula RV; Crawford IP
    J Biol Chem; 1973 May; 248(10):3573-81. PubMed ID: 4349869
    [No Abstract]   [Full Text] [Related]  

  • 16. Feedback control mechanisms in micro-organisms and efficiency of growth.
    Stebbing N
    Subcell Biochem; 1973; 2(2):169-82. PubMed ID: 4373882
    [No Abstract]   [Full Text] [Related]  

  • 17. The regulation of phenolic acid sysdtness in Bacillus subtilis.
    Walsh BL; Peters WJ; Warren RA
    Can J Microbiol; 1971 Jan; 17(1):53-9. PubMed ID: 4995374
    [No Abstract]   [Full Text] [Related]  

  • 18. Tryptophan messenger translation in Escherichia coli.
    Lavallé R; De Hauwer G
    J Mol Biol; 1970 Jul; 51(2):435-47. PubMed ID: 4922205
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of mutants with single and multiple defects in the tryptophan biosynthetic pathway in Bacillus subtilis.
    Whitt DD; Carlton BC
    J Bacteriol; 1968 Oct; 96(4):1273-80. PubMed ID: 4971887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis.
    Steinberg W
    J Bacteriol; 1974 Mar; 117(3):1023-34. PubMed ID: 4205189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.