These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 4315260)
1. Studies on the formation of transfer ribonucleic acid-ribosome complexes. VII. The role of the 3'-hydroxyl-terminal end of transfer ribonucleic acid for interaction with ribosomes and ribosomal subunits. Pestka S J Biol Chem; 1970 Mar; 245(6):1497-503. PubMed ID: 4315260 [No Abstract] [Full Text] [Related]
2. Interaction of transfer RNA with the 30 S subunits of ribosomes in the absence of messenger. Grajevskaja RA; Odinzov VB; Saminsky EM; Bresler SE FEBS Lett; 1973 Jun; 33(1):11-4. PubMed ID: 4352931 [No Abstract] [Full Text] [Related]
3. Further studies on bacterial polypeptide elongation. Lucas-Lenard J; Tao P; Haenni AL Cold Spring Harb Symp Quant Biol; 1969; 34():455-62. PubMed ID: 4314911 [No Abstract] [Full Text] [Related]
4. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli. Yarus M Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616 [No Abstract] [Full Text] [Related]
5. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. Ofengand J; Chen CM J Biol Chem; 1972 Apr; 247(7):2049-58. PubMed ID: 4335860 [No Abstract] [Full Text] [Related]
6. Interactions of tyrosyl transfer ribonucleic acid synthetase from Escherichia coli with its substrates. Inhibition by transfer ribonucleic acid. Buonocore V; Schlesinger S J Biol Chem; 1972 Mar; 247(5):1343-8. PubMed ID: 4334996 [No Abstract] [Full Text] [Related]
7. Studies on the formation of transfer ribonucleic acid-ribosome complexes. II. A possible site on the 50 S subunit protecting aminoacyl transfer ribonucleic acid from deacylation. Pestka S J Biol Chem; 1967 Nov; 242(21):4939-47. PubMed ID: 4862426 [No Abstract] [Full Text] [Related]
8. Action of venom phosphodiesterase on transfer RNA from Escherichia coli. Miller JP; Hirst-Bruns ME; Philipps GR Biochim Biophys Acta; 1970 Sep; 217(1):176-88. PubMed ID: 4323577 [No Abstract] [Full Text] [Related]
9. Peptide chain elongation; indications for the binding of an amino acid polymerization factor, guanosine 5'-triphosphate--aminoacyl transfer ribonucleic acid complex to the messenger-ribosome complex. Skoultchi A; Ono Y; Waterson J; Lengyel P Biochemistry; 1970 Feb; 9(3):508-14. PubMed ID: 4906323 [No Abstract] [Full Text] [Related]
10. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. Pestka S J Biol Chem; 1968 May; 243(10):2810-20. PubMed ID: 4870742 [No Abstract] [Full Text] [Related]
11. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XXIV. Effects of antibiotics on binding of aminoacyl-oligonucleotides to ribosomes. Harris R; Pestka S J Biol Chem; 1973 Feb; 248(4):1168-74. PubMed ID: 4568810 [No Abstract] [Full Text] [Related]
12. Role of split proteins from 30 S subunits in the ribosome-EF-T GTPase reaction. Sander G; Marsh RC; Parmeggiani A FEBS Lett; 1973 Jun; 33(1):132-4. PubMed ID: 4352932 [No Abstract] [Full Text] [Related]
13. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 23. Chloramphenicol, aminoacyl-oligonucleotides, and Escherichia coli ribosomes. Lessard JL; Pestka S J Biol Chem; 1972 Nov; 247(21):6909-12. PubMed ID: 4563072 [No Abstract] [Full Text] [Related]
14. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Pestka S Biochem Biophys Res Commun; 1969 Aug; 36(4):589-95. PubMed ID: 4897408 [No Abstract] [Full Text] [Related]
15. On the nature of two ribosomal sites for specific sRNA binding. Igarashi K; Kaji A Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1971-6. PubMed ID: 4866984 [No Abstract] [Full Text] [Related]
16. On the specificity of the reduction of transfer ribonucleic acids with sodium borohydride. Igo-Kemenes T; Zachau HG Eur J Biochem; 1969 Oct; 10(3):549-56. PubMed ID: 4899928 [No Abstract] [Full Text] [Related]
17. Peptide chain elongation. Skoultchi A; Ono Y; Waterson J; Lengyel P Cold Spring Harb Symp Quant Biol; 1969; 34():437-54. PubMed ID: 4314910 [No Abstract] [Full Text] [Related]
18. Comparative studies on specific and nonspecific binding of transfer ribonucleic acid to ribosomes. Takeda Y; Suzuka I; Kaji A J Biol Chem; 1968 Mar; 243(6):1075-81. PubMed ID: 4869014 [No Abstract] [Full Text] [Related]
19. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IV. A new assay for codon recognition and interaction of transfer ribonucleic acid with 50 S subunits. Pestka S J Biol Chem; 1968 Aug; 243(15):4038-44. PubMed ID: 4875320 [No Abstract] [Full Text] [Related]
20. Studies on the formation of transfer ribonucleic acid-ribosome complexes. IX. Effect of antibiotics on translocation and peptide bond formation. Pestka S Arch Biochem Biophys; 1970 Jan; 136(1):89-96. PubMed ID: 4907016 [No Abstract] [Full Text] [Related] [Next] [New Search]