These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4315644)

  • 1. Role of enzyme-enzyme interactions in the regulation of gluconeogenesis. Effect of fatty acids, tricarboxylic acid cycle intermediates, and dinitrophenol on the rate of inactivation on D-frucose, 1,6-diphosphatase by kidney mitochondria.
    Kratowich N; Mendicino J
    J Biol Chem; 1970 May; 245(10):2483-92. PubMed ID: 4315644
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of enzyme-enzyme interactions in the regulation of glycolysis. Inactivation of D-fructos 1,6-diphosphatase by kidney cortex mitochondria.
    Mendicino J; Prihar HS; Salama FM
    J Biol Chem; 1968 May; 243(10):2710-7. PubMed ID: 4297272
    [No Abstract]   [Full Text] [Related]  

  • 3. Activation of kidney mitochondrial glutaminase by inorganic phosphate and organic acids.
    O'Donovan DJ; Lotspeich WD
    Nature; 1966 Nov; 212(5065):930-2. PubMed ID: 6005667
    [No Abstract]   [Full Text] [Related]  

  • 4. Regulation of the metabolism of rabbit liver mitochondria by long chain fatty acids and other uncouplers of oxidative phosphorylation.
    Davis EJ; Gibson DM
    J Biol Chem; 1969 Jan; 244(1):161-70. PubMed ID: 5773279
    [No Abstract]   [Full Text] [Related]  

  • 5. The effects of 2,4-dinitrophenol on mitochondrial oxidations.
    Chappell JB
    Biochem J; 1964 Feb; 90(2):237-48. PubMed ID: 5890939
    [No Abstract]   [Full Text] [Related]  

  • 6. Control of succinate dehydrogenase in mitochondria.
    Gutman M; Kearney EB; Singer TP
    Biochemistry; 1971 Dec; 10(25):4763-70. PubMed ID: 5140191
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of added nucleotides on renal carbohydrate metabolism.
    Weidemann MJ; Hems DA; Krebs HA
    Biochem J; 1969 Oct; 115(1):1-10. PubMed ID: 4310321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of substrates and inhibitors of the tricarboxylic acid cycle on proximal tubular fluid transport in vitro.
    Maude DL
    Biochim Biophys Acta; 1970 Jul; 215(1):216-9. PubMed ID: 5494516
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of hexokinase and tricarboxylic acid-cycle intermediates on fatty acid oxidation and formation of ketone bodies by rat-liver mitochondria.
    Hird FJ; Symons RH; Weidemann MJ
    Biochem J; 1966 Feb; 98(2):389-93. PubMed ID: 5944642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of succinate-mediated catabolite repression of alkylsulfatase in Pseudomonas aeruginosa by 2,4-dinitrophenol and by sodium malonate.
    Fitzgerald JW; Kight-Olliff LC; Stewart GJ; Beauchamp NF
    Can J Microbiol; 1978 Dec; 24(12):1567-73. PubMed ID: 106946
    [No Abstract]   [Full Text] [Related]  

  • 11. Reversal of the adenosine triphosphate and adenosine diphosphate inactivation of liver fructose 1,6-diphosphatase by 3-phosphoglycerate.
    Pogell BM; Taketa K; Sarngadharan MG
    J Biol Chem; 1971 Mar; 246(6):1947-8. PubMed ID: 4323240
    [No Abstract]   [Full Text] [Related]  

  • 12. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN
    Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency of oxidative phosphorylation in mitochondria of wheat.
    Sarkissian IV; Srivastava HK
    Can J Biochem; 1970 Jun; 48(6):692-8. PubMed ID: 4247483
    [No Abstract]   [Full Text] [Related]  

  • 14. Control of beta-hydroxybutyrate and acetoacetate oxidation by inorganic phosphate and adenosine-5'-diphosphate in heart mitochondria.
    Hatefi Y; Fakouh T
    Arch Biochem Biophys; 1968 Apr; 125(1):114-25. PubMed ID: 5649508
    [No Abstract]   [Full Text] [Related]  

  • 15. Fructose-1,6-diphosphatase of Acinetobacter: inhibition by ATP and citrate.
    Mukkada AJ; Bell EJ
    Biochem Biophys Res Commun; 1969 Oct; 37(2):340-6. PubMed ID: 4310763
    [No Abstract]   [Full Text] [Related]  

  • 16. Renal gluconeogenesis: effects of Ca2+ and H+.
    Nagata N; Rasmussen H
    Biochim Biophys Acta; 1970 Jul; 215(1):1-16. PubMed ID: 4321963
    [No Abstract]   [Full Text] [Related]  

  • 17. Reversible inactivation of rabbit liver fructose 1,6-diphosphatase by adenosine triphosphate and adenosine diphosphate.
    Taketa K; Sarngadharan MG; Watanabe A; Aoe H; Pogell BM
    J Biol Chem; 1971 Sep; 246(18):5676-83. PubMed ID: 4328833
    [No Abstract]   [Full Text] [Related]  

  • 18. IN VITRO METABOLISM BY TURTLE HEART MITOCHONDRIA.
    MERSMANN HJ; PRIVITERA CA
    Am J Physiol; 1964 May; 206():980-4. PubMed ID: 14208974
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of pyruvate carboxylase activity by calcium in intact rat liver mitochondria.
    Kimmich GA; Rasmussen H
    J Biol Chem; 1969 Jan; 244(1):190-9. PubMed ID: 5773282
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation of phosphoenolpyruvate metabolism in mitochondria from guinea pig liver.
    Garber AJ; Ballard FJ
    J Biol Chem; 1970 May; 245(9):2229-40. PubMed ID: 4315147
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.