These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 4315644)
1. Role of enzyme-enzyme interactions in the regulation of gluconeogenesis. Effect of fatty acids, tricarboxylic acid cycle intermediates, and dinitrophenol on the rate of inactivation on D-frucose, 1,6-diphosphatase by kidney mitochondria. Kratowich N; Mendicino J J Biol Chem; 1970 May; 245(10):2483-92. PubMed ID: 4315644 [No Abstract] [Full Text] [Related]
2. Role of enzyme-enzyme interactions in the regulation of glycolysis. Inactivation of D-fructos 1,6-diphosphatase by kidney cortex mitochondria. Mendicino J; Prihar HS; Salama FM J Biol Chem; 1968 May; 243(10):2710-7. PubMed ID: 4297272 [No Abstract] [Full Text] [Related]
3. Activation of kidney mitochondrial glutaminase by inorganic phosphate and organic acids. O'Donovan DJ; Lotspeich WD Nature; 1966 Nov; 212(5065):930-2. PubMed ID: 6005667 [No Abstract] [Full Text] [Related]
4. Regulation of the metabolism of rabbit liver mitochondria by long chain fatty acids and other uncouplers of oxidative phosphorylation. Davis EJ; Gibson DM J Biol Chem; 1969 Jan; 244(1):161-70. PubMed ID: 5773279 [No Abstract] [Full Text] [Related]
5. The effects of 2,4-dinitrophenol on mitochondrial oxidations. Chappell JB Biochem J; 1964 Feb; 90(2):237-48. PubMed ID: 5890939 [No Abstract] [Full Text] [Related]
6. Control of succinate dehydrogenase in mitochondria. Gutman M; Kearney EB; Singer TP Biochemistry; 1971 Dec; 10(25):4763-70. PubMed ID: 5140191 [No Abstract] [Full Text] [Related]
7. Effects of added nucleotides on renal carbohydrate metabolism. Weidemann MJ; Hems DA; Krebs HA Biochem J; 1969 Oct; 115(1):1-10. PubMed ID: 4310321 [TBL] [Abstract][Full Text] [Related]
8. Effects of substrates and inhibitors of the tricarboxylic acid cycle on proximal tubular fluid transport in vitro. Maude DL Biochim Biophys Acta; 1970 Jul; 215(1):216-9. PubMed ID: 5494516 [No Abstract] [Full Text] [Related]
9. The effect of hexokinase and tricarboxylic acid-cycle intermediates on fatty acid oxidation and formation of ketone bodies by rat-liver mitochondria. Hird FJ; Symons RH; Weidemann MJ Biochem J; 1966 Feb; 98(2):389-93. PubMed ID: 5944642 [TBL] [Abstract][Full Text] [Related]
10. Reversal of succinate-mediated catabolite repression of alkylsulfatase in Pseudomonas aeruginosa by 2,4-dinitrophenol and by sodium malonate. Fitzgerald JW; Kight-Olliff LC; Stewart GJ; Beauchamp NF Can J Microbiol; 1978 Dec; 24(12):1567-73. PubMed ID: 106946 [No Abstract] [Full Text] [Related]
11. Reversal of the adenosine triphosphate and adenosine diphosphate inactivation of liver fructose 1,6-diphosphatase by 3-phosphoglycerate. Pogell BM; Taketa K; Sarngadharan MG J Biol Chem; 1971 Mar; 246(6):1947-8. PubMed ID: 4323240 [No Abstract] [Full Text] [Related]
12. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER. BERRY MN Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491 [TBL] [Abstract][Full Text] [Related]
13. High efficiency of oxidative phosphorylation in mitochondria of wheat. Sarkissian IV; Srivastava HK Can J Biochem; 1970 Jun; 48(6):692-8. PubMed ID: 4247483 [No Abstract] [Full Text] [Related]
14. Control of beta-hydroxybutyrate and acetoacetate oxidation by inorganic phosphate and adenosine-5'-diphosphate in heart mitochondria. Hatefi Y; Fakouh T Arch Biochem Biophys; 1968 Apr; 125(1):114-25. PubMed ID: 5649508 [No Abstract] [Full Text] [Related]
15. Fructose-1,6-diphosphatase of Acinetobacter: inhibition by ATP and citrate. Mukkada AJ; Bell EJ Biochem Biophys Res Commun; 1969 Oct; 37(2):340-6. PubMed ID: 4310763 [No Abstract] [Full Text] [Related]
16. Renal gluconeogenesis: effects of Ca2+ and H+. Nagata N; Rasmussen H Biochim Biophys Acta; 1970 Jul; 215(1):1-16. PubMed ID: 4321963 [No Abstract] [Full Text] [Related]