BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 4315932)

  • 1. Equilibrium relations between the cytoplasmic adenine nucleotide system and nicotinamide-adenine nucleotide system in rat liver.
    Veech RL; Raijman L; Krebs HA
    Biochem J; 1970 Apr; 117(3):499-503. PubMed ID: 4315932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of the redox state of the nicotinamide-adenine dinucleotide couple in rat liver cytoplasm.
    Stubbs M; Veech RL; Krebs HA
    Biochem J; 1972 Jan; 126(1):59-65. PubMed ID: 4342386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of ethanol oxidation rate on the lactate/pyruvate ratio and phosphorylation state of the liver in fed rats.
    Pösö AR; Forsander OA
    Acta Chem Scand B; 1976; 30 B(9):801-6. PubMed ID: 188281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver.
    Williamson DH; Lund P; Krebs HA
    Biochem J; 1967 May; 103(2):514-27. PubMed ID: 4291787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. Implications for investigations of hormone action.
    Sistare FD; Haynes RC
    J Biol Chem; 1985 Oct; 260(23):12748-53. PubMed ID: 4044607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between oxygen uptake of perifused rat-liver cells and the cytosolic phosphorylation state calculated from indicator metabolites and a redetermined equilibrium constant.
    van der Meer R; Akerboom TP; Groen AK; Tager JM
    Eur J Biochem; 1978 Mar; 84(2):421-8. PubMed ID: 639798
    [No Abstract]   [Full Text] [Related]  

  • 7. Combined glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase in catecholamine-stimulated guinea-pig cardiac muscle. Comparison with mass-action ratio of creatine kinase.
    Bünger R; Mukohara N; Kang YH; Mallet RT
    Eur J Biochem; 1991 Dec; 202(3):913-21. PubMed ID: 1765102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of ionising radiation on stationary concentration of the metabolites of anaerobic glycolysis in the liver of rats whole-body irradiated by the dose of 1400 R.
    Zícha B; Benes J; Dienstbier Z
    Strahlentherapie; 1968 Apr; 135(4):467-78. PubMed ID: 5675756
    [No Abstract]   [Full Text] [Related]  

  • 9. [Behavior of enzyme activity and metabolites (ATP, lactate) in liver tissue before and after preservation].
    Wolff H; Walther J; Strassburger P
    Z Exp Chir; 1973; 6(3):150-5. PubMed ID: 4772896
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparative study on the phosphoglyceric acid cycle in mammalian erythrocytes.
    Harkness DR; Ponce J; Grayson V
    Comp Biochem Physiol; 1969 Jan; 28(1):129-38. PubMed ID: 4304991
    [No Abstract]   [Full Text] [Related]  

  • 11. 31P NMR magnetization-transfer measurements of flux between inorganic phosphate and adenosine 5'-triphosphate in yeast cells genetically modified to overproduce phosphoglycerate kinase.
    Brindle KM
    Biochemistry; 1988 Aug; 27(16):6187-96. PubMed ID: 3056522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of adenosine on intermediary metabolism of isolated hepatocytes.
    Marchand JC; Lavoinne A; Giroz M; Matray F
    Biochimie; 1979; 61(11-12):1273-82. PubMed ID: 231980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The redox state of NADplus-NADH systems in guinea pig liver during increased fatty acid oxidation.
    Willms B; Kleineke J; Söling HD
    Biochim Biophys Acta; 1970 Sep; 215(3):438-48. PubMed ID: 4319215
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of morphine on cerebral glycolytic intermediates and enzymes of rats in vitro.
    Dodge PW; Takemori AE
    Biochem Pharmacol; 1969 Aug; 18(8):1873-82. PubMed ID: 4309449
    [No Abstract]   [Full Text] [Related]  

  • 15. The redox state of NAD+-NADH systems in rat liver during ketosis, and the so-called "triosephosphate block".
    Söling HD; Kattermann R; Schmidt H; Kneer P
    Biochim Biophys Acta; 1966 Jan; 115(1):1-14. PubMed ID: 4286996
    [No Abstract]   [Full Text] [Related]  

  • 16. Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused livers from normal and phenobarbital-treated rats.
    Kauffman FC; Evans RK; Thurman RG
    Biochem J; 1977 Sep; 166(3):583-92. PubMed ID: 23104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic phosphorylation potential.
    Veech RL; Lawson JW; Cornell NW; Krebs HA
    J Biol Chem; 1979 Jul; 254(14):6538-47. PubMed ID: 36399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measured and calculated NAD+-NADH ratios in human erythrocytes.
    Marshall WE; Omachi A
    Biochim Biophys Acta; 1974 Jun; 354(1):1-10. PubMed ID: 4367846
    [No Abstract]   [Full Text] [Related]  

  • 19. The regulation of glycolysis in mammalian erythrocytes.
    Rapoport S
    Essays Biochem; 1968; 4():69-103. PubMed ID: 4308730
    [No Abstract]   [Full Text] [Related]  

  • 20. The redox state of the free nicotinamide-adenine dinucleotide couple in the cytoplasm and mitochondria of muscle tissue from Ascaris lumbricoides (Nematoda).
    Barrett J; Beis I
    Comp Biochem Physiol A Comp Physiol; 1973 Feb; 44(2):331-40. PubMed ID: 4145753
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.