These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 4316207)
1. A second form of energy transfer factor B and a new factor (factor C) of mitochondrial oxidative phosphorylation. Lam KW; Karunakaran ME; Sanadi DR Biochem Biophys Res Commun; 1970 May; 39(3):437-43. PubMed ID: 4316207 [No Abstract] [Full Text] [Related]
2. A complex of mitochondrial factor A and a new factor involved in oxidative phosphorylation. Sani BP; Lam KW; Sanadi DR Biochem Biophys Res Commun; 1970 May; 39(3):444-9. PubMed ID: 4316208 [No Abstract] [Full Text] [Related]
3. Inhibition by avidin of the ATP-Pi enchange activities associated with preparations of energy transfer factors A and A-D. You K; Hatefi Y Biochem Biophys Res Commun; 1973 May; 52(2):343-9. PubMed ID: 4351134 [No Abstract] [Full Text] [Related]
4. Studies on oxidative phosphorylation. XIX. Functional site of factor B in energy transfer reactions. Lam KW; Yang SS Arch Biochem Biophys; 1969 Sep; 133(2):366-72. PubMed ID: 4309592 [No Abstract] [Full Text] [Related]
5. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XX. Characterization of ASU-particles. Fessenden-Raden JM J Biol Chem; 1969 Dec; 244(24):6662-7. PubMed ID: 4311917 [No Abstract] [Full Text] [Related]
6. Studies on oxidative phosphorylation. XVI. Sulfhydryl involvement in the energy-transfer pathway. Kurup CK; Sanadi DR Biochemistry; 1968 Dec; 7(12):4483-91. PubMed ID: 4302625 [No Abstract] [Full Text] [Related]
7. Involvement of thiol function in the activity of energy transfer factor D of mitochondrial oxidative phosphorylation. Sani BP; Sanadi DR Arch Biochem Biophys; 1971 Nov; 147(1):351-2. PubMed ID: 4329865 [No Abstract] [Full Text] [Related]
8. Effect of aurovertin on energy-linked processes related to oxidative phosphorylation. Lenaz G Biochem Biophys Res Commun; 1965 Oct; 21(2):170-5. PubMed ID: 4286024 [No Abstract] [Full Text] [Related]
9. Preservation of energy coupling in submitochondrial particles during extraction and reinsertion of cytochrome C. Arion WJ; Wright BJ Biochem Biophys Res Commun; 1970 Aug; 40(3):594-9. PubMed ID: 4321657 [No Abstract] [Full Text] [Related]
10. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIX. Purification and characterization of a new coupling factor (F5). Fessenden-Raden JM; Lange AJ; Dannenberg MA; Racker E J Biol Chem; 1969 Dec; 244(24):6656-61. PubMed ID: 4311916 [No Abstract] [Full Text] [Related]
11. Energy linked NAD reduction in phophorylating submitochondrial particles from heavy layer beef heart mitochondria. A lag phenomenon and its localization. Schuurmans Stekhoven FM; Sani BP; Sanadi DR Biochem Biophys Res Commun; 1970; 39(6):1026-30. PubMed ID: 4327299 [No Abstract] [Full Text] [Related]
12. [Mechanisms of the conservation of energy in the mitochondrial membrane]. Ernster L; Juntti K; Asami K Biokhimiia; 1973; 38(5):1062-9. PubMed ID: 4149966 [No Abstract] [Full Text] [Related]
13. Studies of the energy-transfer system of submitochondrial particles. I. Competition between oxidative phosphorylation and the energy-linked nicotinamide-adenine dinucleotide transhydrogenase reaction. Lee C; Ernster L Eur J Biochem; 1968 Feb; 3(4):385-90. PubMed ID: 4296029 [No Abstract] [Full Text] [Related]
14. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN; Saks VA; Kupriyanov VV Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
15. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria. Wikström MK Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077 [No Abstract] [Full Text] [Related]
16. A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on enrgy-linked reactions in mitochondria and submitochondrial particles. Roberton AM; Holloway CT; Knight IG; Beechey RB Biochem J; 1968 Jul; 108(3):445-56. PubMed ID: 4299126 [TBL] [Abstract][Full Text] [Related]
17. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700 [No Abstract] [Full Text] [Related]
18. Some peculiarities of metabolism of the myocardium under conditions of experimental disturbance of the microcirculation. Chernukh AM; Chernysheva GV Circ Res; 1974 Sep; 35 Suppl 3():150-5. PubMed ID: 4370382 [No Abstract] [Full Text] [Related]
19. Inhibition by formaldehyde of energy transfer and related processes in rat-liver mitochondria. Van Buskirk JJ; Frisell WR Biochim Biophys Acta; 1967 Sep; 143(2):292-8. PubMed ID: 4292887 [No Abstract] [Full Text] [Related]
20. Effect of coupling factor 3 on oxidative phosphorylation. Fessenden JM; Dannenberg MA; Racker E Biochem Biophys Res Commun; 1966 Oct; 25(1):54-9. PubMed ID: 4291349 [No Abstract] [Full Text] [Related] [Next] [New Search]