These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4316208)

  • 21. Identity of coupling factor 2 and factor B.
    Racker E; Fessenden-Raden JM; Kandrach MA; Lam KW; Sanadi DR
    Biochem Biophys Res Commun; 1970 Dec; 41(6):1474-9. PubMed ID: 4098895
    [No Abstract]   [Full Text] [Related]  

  • 22. [Oxidative phosphorylation in rat liver mitochondria under deep freeaing and thawing].
    Bilous AM; Lemeshko VV
    Ukr Biokhim Zh; 1974; 46(3):368-71. PubMed ID: 4365492
    [No Abstract]   [Full Text] [Related]  

  • 23. Oxidative phosphorylation and respiratory control of brain mitochondria isolated from kernicteric rats.
    Menken M; Weinbach EC
    J Neurochem; 1967 Feb; 14(2):189-93. PubMed ID: 4289875
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of coupling factor 3 on oxidative phosphorylation.
    Fessenden JM; Dannenberg MA; Racker E
    Biochem Biophys Res Commun; 1966 Oct; 25(1):54-9. PubMed ID: 4291349
    [No Abstract]   [Full Text] [Related]  

  • 25. Involvement of a dithiol protein in mitochondrial energy-linked functions and its relation to coupling factor B.
    Stiggall DL; Galante YM; Kiehl R; Hatefi Y
    Arch Biochem Biophys; 1979 Sep; 196(2):638-44. PubMed ID: 226001
    [No Abstract]   [Full Text] [Related]  

  • 26. [Enzymatic organization of mitochondrial membranes].
    Wojtczak L
    Postepy Biochem; 1971; 17(2):209-23. PubMed ID: 4329121
    [No Abstract]   [Full Text] [Related]  

  • 27. The role of Factor B in the energy transfer reactions of oxidative phosphorylation.
    Sanadi DR; Lam KW; Kurup CK
    Proc Natl Acad Sci U S A; 1968 Sep; 61(1):277-83. PubMed ID: 4301590
    [No Abstract]   [Full Text] [Related]  

  • 28. The action of tributyltin on energy coupling in coupling-factor-deficient submitochondrial particles.
    Dawson AP; Selwyn MJ
    Biochem J; 1975 Nov; 152(2):333-9. PubMed ID: 4063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms of energy transformations.
    Racker E
    Annu Rev Biochem; 1977; 46():1006-14. PubMed ID: 20035
    [No Abstract]   [Full Text] [Related]  

  • 30. Effect of amyl azide on respiration and oxidative phosphorylation in mitochondria.
    Bogucka K; Wojtczak L; EreciƄska M
    Acta Biochim Pol; 1970; 17(3):239-46. PubMed ID: 4320528
    [No Abstract]   [Full Text] [Related]  

  • 31. Biochemical properties of mitochondria from Candida albicans.
    Yamaguchi H; Kanda Y; Iwata K
    Sabouraudia; 1971 Nov; 9(3):221-30. PubMed ID: 4109209
    [No Abstract]   [Full Text] [Related]  

  • 32. A soluble mitochondrial ATP synthetase complex catalyzing ATP-phosphate and ATP-ADP exchange.
    Fisher RJ; Chen JC; Sani BP; Kaplay SS; Sanadi DR
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2181-4. PubMed ID: 5289378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-linked incorporation of citrate into rat liver mitochondria.
    Max SR; Purvis JL
    Biochem Biophys Res Commun; 1965 Dec; 21(6):587-94. PubMed ID: 5879467
    [No Abstract]   [Full Text] [Related]  

  • 34. Accumulation of azide in mitochondria and the effect of azide on energy metabolism.
    Zvyagilskaya RA; Bogucka K; Wojtczak L
    Acta Biochim Pol; 1969; 16(2):163-73. PubMed ID: 4310370
    [No Abstract]   [Full Text] [Related]  

  • 35. Studies on the energy metabolism of human leukocytes. I. Oxidative phosphorylation by human leukocyte mitochondria.
    Foster JM; Terry ML
    Blood; 1967 Aug; 30(2):168-75. PubMed ID: 4961901
    [No Abstract]   [Full Text] [Related]  

  • 36. Action mechanism of phenothiazine derivatives on mitochondrial respiration.
    Matsubara T; Hagihara B
    J Biochem; 1968 Feb; 63(2):156-64. PubMed ID: 4299374
    [No Abstract]   [Full Text] [Related]  

  • 37. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA
    Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700
    [No Abstract]   [Full Text] [Related]  

  • 38. Studies on energy-linked reactions. Energy-linked reduction of oxidized nicotinamide-adenine dinucleotide by succinate in Escherichia coli.
    Sweetman AJ; Griffiths DE
    Biochem J; 1971 Jan; 121(1):117-24. PubMed ID: 4107303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. STUDIES ON OXIDATIVE PHOSPHORYLATION. X. A COUPLING ENZYME WHICH ACTIVATES REVERSED ELECTRON TRANSFER.
    ANDREOLI TE; LAM KW; SANADI DR
    J Biol Chem; 1965 Jun; 240():2644-53. PubMed ID: 14304880
    [No Abstract]   [Full Text] [Related]  

  • 40. Control of the rate of reverse electron transport in submitochondrial particles by the free energy.
    Rottenberg H; Gutman M
    Biochemistry; 1977 Jul; 16(14):3220-7. PubMed ID: 196630
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.