BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 4317)

  • 1. Fluroescence of proteins in 6-M guanidine hydrochloride. A method for the quantitative determination of tryptophan.
    Pajot P
    Eur J Biochem; 1976 Mar; 63(1):263-9. PubMed ID: 4317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions.
    Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC
    Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subunit dissociation and protein unfolding in the bovine heart cytochrome oxidase complex induced by guanidine hydrochloride.
    Hill BC; Cook K; Robinson NC
    Biochemistry; 1988 Jun; 27(13):4741-7. PubMed ID: 2844238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A lysine 73-->histidine variant of yeast iso-1-cytochrome c: evidence for a native-like intermediate in the unfolding pathway and implications for m value effects.
    Godbole S; Dong A; Garbin K; Bowler BE
    Biochemistry; 1997 Jan; 36(1):119-26. PubMed ID: 8993325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of subtilisin types Novo and Carlsberg by circular polarization of fluorescence.
    Schlessinger J; Roche RS; Steinberg IZ
    Biochemistry; 1975 Jan; 14(2):255-62. PubMed ID: 235273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of guanidine hydrochloride on the holo- and apo-enzymes of pig heart lipoamide dehydrogenase.
    Ogasahara K; Koike K; Hamada M; Hiraoka T
    J Biochem; 1976 Apr; 79(4):819-28. PubMed ID: 931980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular dichroism and gel filtration behavior of subtilisin enzymes in concentrated solutions of guanidine hydrochloride.
    Brown MF; Schleich T
    Biochemistry; 1975 Jul; 14(14):3069-74. PubMed ID: 238582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan analysis of proteins in 6M guanidine hydrochloride: modification for more general application.
    Bredderman PJ
    Anal Biochem; 1974 Sep; 61(1):298-301. PubMed ID: 4472418
    [No Abstract]   [Full Text] [Related]  

  • 9. Tryptophanyl fluorescence heterogeneity of apomyoglobins. Correlation with the presence of two distinct structural domains.
    Irace G; Balestrieri C; Parlato G; Servillo L; Colonna G
    Biochemistry; 1981 Feb; 20(4):792-9. PubMed ID: 7213613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of folding of the IgG binding domain of peptostreptococcal protein L.
    Scalley ML; Yi Q; Gu H; McCormack A; Yates JR; Baker D
    Biochemistry; 1997 Mar; 36(11):3373-82. PubMed ID: 9116017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical modification of tryptophan residues and stability changes in proteins.
    Okajima T; Kawata Y; Hamaguchi K
    Biochemistry; 1990 Oct; 29(39):9168-75. PubMed ID: 2125474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An acid induced conformational transition of denatured cytochrome c in urea and guanidine hydrochloride solutions.
    Tsong TY
    Biochemistry; 1975 Apr; 14(7):1542-7. PubMed ID: 235957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quenching of tryptophanyl fluorescence of human growth hormone by iodide.
    Maddaiah VT; Collipp PJ
    Chem Biol Interact; 1976 Mar; 12(3-4):221-7. PubMed ID: 3284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The detection of kinetic intermediates during the unfolding of lipoxygenase-1 by urea or guanidine hydrochloride.
    Srinivasulu S; Rao AG
    Biochim Biophys Acta; 1996 May; 1294(2):115-20. PubMed ID: 8645728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aromatic and heme chromophores of rabbit hemopexin. Difference absorption and fluorescence spectra.
    Morgan WT; Sutor RP; Muller-Eberhard U
    Biochim Biophys Acta; 1976 Jun; 434(2):311-23. PubMed ID: 8096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renaturation of yeast inorganic pyrophosphatase denatured in urea and guanidine hydrochloride.
    Yano Y; Irie M
    J Biochem; 1975 Nov; 78(5):1001-11. PubMed ID: 765323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of apolipoprotein AI from apoprotein-lipid complexes and from high-density lipoproteins. A fluorescence study.
    Rosseneu M; Van Tornout P; Lievens MJ; Schmitz G; Assmann G
    Eur J Biochem; 1982 Nov; 128(2-3):455-60. PubMed ID: 6818027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of fluorescence energy transfer to characterize the compactness of the constant fragment of an immunoglobulin light chain in the early stage of folding.
    Kawata Y; Hamaguchi K
    Biochemistry; 1991 May; 30(18):4367-73. PubMed ID: 1902379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the single tryptophan residue in the structure and function of ribonuclease T1.
    Fukunaga Y; Tamaoki H; Sakiyama F; Narita K
    J Biochem; 1982 Jul; 92(1):143-53. PubMed ID: 6811571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.