These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 431735)

  • 21. Intracochlear potential recorded with micropipets. I. Correlations with micropipet location.
    Sohmer HS; Peake WT; Weiss TF
    J Acoust Soc Am; 1971 Aug; 50(2):572-86. PubMed ID: 5096497
    [No Abstract]   [Full Text] [Related]  

  • 22. Correlations between auditory structures and hearing sensitivity in non-human primates.
    Coleman MN; Colbert MW
    J Morphol; 2010 May; 271(5):511-32. PubMed ID: 20025067
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cochlear labyrinth volume and hearing abilities in primates.
    Kirk EC; Gosselin-Ildari AD
    Anat Rec (Hoboken); 2009 Jun; 292(6):765-76. PubMed ID: 19462443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mammalian cochlea as a physics guided evolution-optimized hearing sensor.
    Lorimer T; Gomez F; Stoop R
    Sci Rep; 2015 Jul; 5():12492. PubMed ID: 26216397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals.
    West CD
    J Acoust Soc Am; 1985 Mar; 77(3):1091-101. PubMed ID: 3980863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracochlear potential recorded with micropipets. II. Responses in the cochlear scalae to tones.
    Weiss TF; Peake WT; Sohmer HS
    J Acoust Soc Am; 1971 Aug; 50(2):587-601. PubMed ID: 5096498
    [No Abstract]   [Full Text] [Related]  

  • 27. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cochlear Implant Electrode Effect on Sound Energy Transfer Within the Cochlea During Acoustic Stimulation.
    Greene NT; Mattingly JK; Jenkins HA; Tollin DJ; Easter JR; Cass SP
    Otol Neurotol; 2015 Sep; 36(9):1554-61. PubMed ID: 26333018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nogo in the Mammalian cochlea.
    Caelers A; Monge A; Michael J; Schwab ME; Bodmer D
    Otol Neurotol; 2009 Aug; 30(5):668-75. PubMed ID: 19546827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Great Ears: Low-Frequency Sensitivity Correlates in Land and Marine Leviathans.
    Ketten DR; Arruda J; Cramer S; Yamato M
    Adv Exp Med Biol; 2016; 875():529-38. PubMed ID: 26611001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symposium. ENT for nonspecialists. The ear: structure and function.
    Pearson BW
    Postgrad Med; 1975 May; 57(6):50-4. PubMed ID: 1124255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds.
    Greene NT; Jenkins HA; Tollin DJ; Easter JR
    Hear Res; 2017 May; 348():16-30. PubMed ID: 28189837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical tuning characteristics of the hearing organ measured at the sensory cells in the gerbil temporal bone preparation.
    Ulfendahl M; Khanna SM
    Pflugers Arch; 1993 Jul; 424(2):95-104. PubMed ID: 8414906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The mechanism of changes in the hearing function of the internal ear under the action of intensive sound. (On the presence of pessimal inhibition in the cochlea)].
    Mazo IL
    Vestn Otorinolaringol; 1965; 27(6):67-74. PubMed ID: 5873820
    [No Abstract]   [Full Text] [Related]  

  • 35. Bone conduction hearing sensitivity in normal-hearing subjects: transcutaneous stimulation at BAHA vs BCI position.
    Reinfeldt S; Håkansson B; Taghavi H; Eeg-Olofsson M
    Int J Audiol; 2014 Jun; 53(6):360-9. PubMed ID: 24588466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ear and hearing in Sphenodon punctatus.
    Gans C; Wever EG
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):4244-6. PubMed ID: 1069313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of Wnt and Notch signaling in regulating hair cell regeneration in the cochlea.
    Waqas M; Zhang S; He Z; Tang M; Chai R
    Front Med; 2016 Sep; 10(3):237-49. PubMed ID: 27527363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experiments in comparative hearing: Georg von Békésy and beyond.
    Manley GA; Narins PM; Fay RR
    Hear Res; 2012 Nov; 293(1-2):44-50. PubMed ID: 22560960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frequency analysis in the cochlea and the traveling wave of von Békésy.
    Naftalin L
    Physiol Chem Phys; 1980; 12(6):521-6. PubMed ID: 7267738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.