These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 4317422)

  • 1. [Microsomal NADH-dependent electron transport].
    Schulze HR; Gallenkamp H; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1970 Jul; 351(7):809-17. PubMed ID: 4317422
    [No Abstract]   [Full Text] [Related]  

  • 2. [Immunochemical studies on the microsomal NADH-dependent electron transport].
    Pönnighaus JM; Schulze HU; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1972 May; 353(5):815-24. PubMed ID: 4341677
    [No Abstract]   [Full Text] [Related]  

  • 3. Distinction between two microsomal activities of NADH cytochrome c reductase by means of Triton X-100.
    Staroń K; Kaniuga Z
    Hoppe Seylers Z Physiol Chem; 1972 Jan; 353(1):14-8. PubMed ID: 4401403
    [No Abstract]   [Full Text] [Related]  

  • 4. [Stoichiometry of microsomal electron transport to semidehydro-L-(plus)-ascorbic acid].
    Weber H; Weis W; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1969 Oct; 350(10):1176. PubMed ID: 5352343
    [No Abstract]   [Full Text] [Related]  

  • 5. [Monodehydro-L(plus)-ascorbate reducing systems in differently prepared pig liver microsomes (author's transl)].
    Weber H; Weis W; Wolf B
    Hoppe Seylers Z Physiol Chem; 1974 May; 355(5):595-9. PubMed ID: 4154897
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of Na+ and K+ ions on the rate of electron transport in microsomes].
    Archakov AI; Devichenskiĭ VM
    Biofizika; 1973; 18(6):1041-6. PubMed ID: 4156482
    [No Abstract]   [Full Text] [Related]  

  • 7. [Semidehydro-D(-)-ascorbic acid as a substrate of microsomal NADH: semidehydroascorbate oxidoreductase (EC 1.6.5.4)].
    Oehler G; Weis W; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1972 Mar; 353(3):495-6. PubMed ID: 4337572
    [No Abstract]   [Full Text] [Related]  

  • 8. [Studies on the lipid dependability of NADH: semidehydroascorbinic-acid-oxidoreductase (EC 1.6.5.4)].
    Schulze HU; Staudinger H
    Hoppe Seylers Z Physiol Chem; 1971 Feb; 352(2):309-17. PubMed ID: 4323626
    [No Abstract]   [Full Text] [Related]  

  • 9. Electron transport activities in rat liver microsomal preparations isolated by various methods.
    Staroń K; Stepień P; Kaniuga Z
    Bull Acad Pol Sci Biol; 1972; 20(8):535-8. PubMed ID: 4403622
    [No Abstract]   [Full Text] [Related]  

  • 10. [Occurrence of 2 b5 cytochromes in rat liver microsomes].
    Archakov AI; Devichenskiĭ VM; Severina VA
    Biokhimiia; 1969; 34(4):782-90. PubMed ID: 4391111
    [No Abstract]   [Full Text] [Related]  

  • 11. [The effect of dietary lipids on microsomal electron transport proteins in the rat].
    Domke I; Weis W
    Ann Nutr Metab; 1984; 28(5):261-7. PubMed ID: 6486718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of some possible mechanisms by which magnesium activates hepatic microsomal drug metabolism in vitro.
    Peters MA; Fouts JR
    J Pharmacol Exp Ther; 1970 Jun; 173(2):233-41. PubMed ID: 4393573
    [No Abstract]   [Full Text] [Related]  

  • 13. Microsomal mixed-function oxidations: the metabolism of xenobiotics.
    Mason HS; North JC; Vanneste M
    Fed Proc; 1965; 24(5):1172-80. PubMed ID: 4378722
    [No Abstract]   [Full Text] [Related]  

  • 14. Difference in 2-thenoyltrifluoroacetone sensitivity of electron transport with and against the redox potential gradient.
    Streichman S; Avi-Dor Y
    Biochim Biophys Acta; 1970 Sep; 216(2):262-9. PubMed ID: 4396181
    [No Abstract]   [Full Text] [Related]  

  • 15. The involvement of NADH-cytochrome b5 reductase and cytochrome b5 complex in microsomal NADH-cytochrome c reductase activity. Resolution of the complex by triton X-100.
    Starón K; Kaniuga Z
    Acta Biochim Pol; 1974; 21(1):55-60. PubMed ID: 4364830
    [No Abstract]   [Full Text] [Related]  

  • 16. [Molecular organization and function of the electron transport chains of liver endoplasmic reticulum membranes].
    Archakov AI
    Usp Sovrem Biol; 1971; 71(2):163-83. PubMed ID: 4397971
    [No Abstract]   [Full Text] [Related]  

  • 17. Stimulation of NADH oxidation during NADPH dependent microsomal electron transport reactions.
    Werringloer J; Estabrook RW
    Biochem Biophys Res Commun; 1976 Aug; 71(3):834-9. PubMed ID: 9085
    [No Abstract]   [Full Text] [Related]  

  • 18. [Microsomal oxidation system in the course of development and aging].
    Lemeshko VV
    Biokhimiia; 1980 Nov; 45(11):1964-9. PubMed ID: 6786371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On functional role of cytochrome b5. II. NADH-linked ascorbate radical reductase activity in microsomes.
    Hara T; Minakami S
    J Biochem; 1971 Feb; 69(2):325-30. PubMed ID: 4323883
    [No Abstract]   [Full Text] [Related]  

  • 20. Ascorbic acid and biological systems. Ascorbic acid and electron transport.
    Weis W
    Ann N Y Acad Sci; 1975 Sep; 258():190-200. PubMed ID: 941
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.