These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4317680)

  • 1. Direct evidence for 1-electron reduction of molecular oxygen by an enzyme system.
    Bray ; Knowles RC; Pick FM; Gibson JF
    Hoppe Seylers Z Physiol Chem; 1968 Nov; 349(11):1591-2. PubMed ID: 4317680
    [No Abstract]   [Full Text] [Related]  

  • 2. Electron-spin-resonance evidence for enzymic reduction of oxygen to a free radical, the superoxide ion.
    Knowles PF; Gibson JF; Pick FM; Bray RC
    Biochem J; 1969 Jan; 111(1):53-8. PubMed ID: 4304373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the formation of the superoxide anion radical during the reaction of reduced iron-sulfur proteins with oxygen.
    Orme-Johnson WH; Beinert H
    Biochem Biophys Res Commun; 1969 Sep; 36(6):905-11. PubMed ID: 4310147
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemical and biological aspects of singlet excited molecular oxygen.
    Wilson T; Hastings JW
    Photophysiology; 1970; 5():49-95. PubMed ID: 4125494
    [No Abstract]   [Full Text] [Related]  

  • 5. Free-radical intermediates in the reduction of oxygen.
    Bray RC
    Biochem J; 1970 Apr; 117(2):13P-14P. PubMed ID: 4315974
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxygen-17 hyperfine splitting in the electron paramagnetic resonance spectrum of enzymically generated superoxide.
    Bray RC; Pick FM; Samuel D
    Eur J Biochem; 1970 Aug; 15(2):352-5. PubMed ID: 4323043
    [No Abstract]   [Full Text] [Related]  

  • 7. MAGNETIC SUSCEPTIBILITY CHANGES AND ELECTRON SPIN RESONANCE SIGNALS RELATED TO THE IRON OF XANTHINE OXIDASE.
    EHRENBERG A; BRAY RC
    Arch Biochem Biophys; 1965 Jan; 109():199-202. PubMed ID: 14281948
    [No Abstract]   [Full Text] [Related]  

  • 8. [Participation of iron in OH-radical formation in a system generating a superoxide anion-radical].
    Osipov AN; Savov VM; Zubarev VE; Azizova OA; Vladimirov IuA
    Biofizika; 1981; 26(2):193-7. PubMed ID: 6266504
    [No Abstract]   [Full Text] [Related]  

  • 9. One-electron transfer reactions in biochemical systems. IV. A mixed mechanism in the reaction of milk xanthine oxidase with electron acceptors.
    Nakamura S; Yamazaki I
    Biochim Biophys Acta; 1969 Sep; 189(1):29-37. PubMed ID: 4309792
    [No Abstract]   [Full Text] [Related]  

  • 10. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR studies on reduction of oxygen to superoxide by some biochemical systems.
    Nilsson R; Pick FM; Bray RC
    Biochim Biophys Acta; 1969 Oct; 192(1):145-8. PubMed ID: 4310532
    [No Abstract]   [Full Text] [Related]  

  • 12. Distribution of reducing equivalents on xanthine oxidase molecules and the rates of the intramolecular electron-transfer reactions.
    Bray RC; Lowe DJ; Barber MJ
    Biochem J; 1974 Jul; 141(1):309-11. PubMed ID: 4375974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple phases in the reduction of xanthine oxidase by substrates.
    Swann JC; Bray RC
    Eur J Biochem; 1972 Apr; 26(3):407-15. PubMed ID: 4338679
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase.
    Fridovich I
    J Biol Chem; 1970 Aug; 245(16):4053-7. PubMed ID: 5496991
    [No Abstract]   [Full Text] [Related]  

  • 15. A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species.
    Trevithick JR; Dzialoszynski T
    Biochem Mol Biol Int; 1994 Aug; 33(6):1179-90. PubMed ID: 7804144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microximetry: simultaneous determination of oxygen consumption and free radical production using electron paramagnetic resonance spectroscopy.
    Ilangovan G; Zweier JL; Kuppusamy P
    Methods Enzymol; 2004; 381():747-62. PubMed ID: 15063710
    [No Abstract]   [Full Text] [Related]  

  • 17. An electron spin resonance study of free radicals from catechol estrogens.
    Kalyanaraman B; Hintz P; Sealy RC
    Fed Proc; 1986 Sep; 45(10):2477-84. PubMed ID: 3017766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sonochemical free radical formation in aqueous solutions.
    Riesz P; Christman CL
    Fed Proc; 1986 Sep; 45(10):2485-92. PubMed ID: 3017767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate-induced chemiluminescence of xanthine oxidase and aldehyde oxidase.
    Arneson RM
    Arch Biochem Biophys; 1970 Feb; 136(2):352-60. PubMed ID: 4244885
    [No Abstract]   [Full Text] [Related]  

  • 20. Reactivities of diphenylfuran (a singlet oxygen trap) with singlet oxygen and hydroxyl radical in aqueous systems.
    Takayama K; Noguchi T; Nakano M
    Biochem Biophys Res Commun; 1977 Apr; 75(4):1052-8. PubMed ID: 405009
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.