These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 4318014)

  • 1. Rates of aminoacyl-transfer-ribonucleic acid synthesis in vivo and in vitro by bean leaves.
    Hall TC; Tao KL
    Biochem J; 1970 May; 117(5):853-9. PubMed ID: 4318014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors controlling aminoacyl-transfer-ribonucleic acid synthesis in vitro by a plant system.
    Tao KL; Hall TC
    Biochem J; 1971 Feb; 121(3):495-501. PubMed ID: 5119785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical modification of aminoacyl ligases and the effect on formation of aminoacyl-tRNA.
    Haines JA; Zamecnik PC
    Biochim Biophys Acta; 1967 Sep; 146(1):227-38. PubMed ID: 4293964
    [No Abstract]   [Full Text] [Related]  

  • 4. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. The role of guanosine triphosphate.
    Hradec J
    Biochem J; 1972 Feb; 126(4):933-43. PubMed ID: 5073244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. Formation and properties of an aminoacyl-transfer ribonucleic acid-transferase I complex.
    Hradec J
    Biochem J; 1972 Feb; 126(4):923-31. PubMed ID: 5073243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoacyl transfer RNA formation. I. Absence of pyrophosphate-ATP exchange in aminoacyl-tRNA formation stimulated by polyamines.
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1971 Nov; 254(1):91-103. PubMed ID: 4332417
    [No Abstract]   [Full Text] [Related]  

  • 7. Estimation of amino acids by an isotopic dilution procedure using the enzymatic synthesis of aminoacyl transfer ribonucleic acid.
    de Fernández MT; de Sesé ZM; Scornik OA
    Biochemistry; 1970 May; 9(11):2280-5. PubMed ID: 4246508
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibitory effects of pH5 enzyme from non-lactating bovine mammary gland on various stages of protein synthesis in the rat liver amino acid-incorporating system.
    Herrington MD; Hawtrey AO
    Biochem J; 1969 Dec; 115(4):671-8. PubMed ID: 5357016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoacyl transfer RNA formation. II. Comparison of the mechanisms of aminoacylations stimulated by polyamines and Mg 2+ .
    Igarashi K; Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1972 Apr; 262(4):476-87. PubMed ID: 4336270
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for the absence of the terminal adenine nucleotide at the amino acid-acceptor end of transfer ribonucleic acid in non-lactating bovine mammary gland and its inhibitory effect on the aminoacylation of rat liver transfer ribonucleic acid.
    Herrington MD; Hawtrey AO
    Biochem J; 1970 Feb; 116(3):405-14. PubMed ID: 5435687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial aminoacyl-transfer-ribonucleic acid synthetase and aminoacyl-transferring enzyme activity.
    Gibson K; Harris P
    Biochem J; 1972 Jan; 126(2):409-16. PubMed ID: 5071178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl transfer RNA formation. 3. Mechanism of aminoacylation stimulated by polyamines.
    Matsuzaki K; Takeda Y
    Biochim Biophys Acta; 1973 May; 308(3):339-51. PubMed ID: 4351152
    [No Abstract]   [Full Text] [Related]  

  • 13. Extensive charging of transfer ribonucleic acid by bean leaf extracts in vitro.
    Tao KL; Hall TC
    Biochem J; 1971 Dec; 125(4):975-81. PubMed ID: 5144266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative studies of the tRNA's and the aminoacyl-tRNA synthetases from the cytoplasm and the chloroplasts of Phaseolus vulgaris.
    Burkard G; Guillemaut P; Weil JH
    Biochim Biophys Acta; 1970 Nov; 224(1):184-98. PubMed ID: 4321417
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of lipids, in particular cholesteryl 14-methylhexadecanoate, on the incorporation of labelled amino acids into transfer ribonucleic acid in vitro.
    Hradec J; Dusek Z
    Biochem J; 1968 Nov; 110(1):1-8. PubMed ID: 5722689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro protein synthesis directed by R17 viral ribonucleic acid. IV. Chemical synthesis of modified aminoacyl-tRNA.
    Igarashi SJ; Paranchych W
    J Biochem; 1970 Jan; 67(1):123-31. PubMed ID: 5416887
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the formation of transfer ribonucleic acid-ribosomes complexes. XII. Phenylalanyl-oligonucleotide binding to E. coli ribosomes: necessity for a free amino group.
    Hishizawa T; Lessard JL; Pestka S
    Proc Natl Acad Sci U S A; 1970 Jun; 66(2):523-30. PubMed ID: 4915888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. the interaction of cholesteryl 14-methylhexadecanoate.
    Hradec J
    Biochem J; 1972 Mar; 126(5):1225-9. PubMed ID: 5073734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cortisone on transfer ribonucleic acid and aminoacyl-transfer-ribonucleic acid synthetases in rat liver.
    Agarwal MK; Hanoune J
    Biochem J; 1970 Jun; 118(2):31P. PubMed ID: 5484683
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetic equations for ATP--pyrophosphate exchange catalyzed by aminoacyl-tRNA synthetase.
    Knorre DG; Malygin EG
    Mol Biol; 1971; 5(3):287-90. PubMed ID: 4343100
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.