These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 4318243)

  • 41. Effects of 17β-estradiol pollution on water microbial methane oxidation activity.
    Ruan A; Zong F; Zhao Y; Liu C; Chen J
    Environ Toxicol Chem; 2014 Apr; 33(4):768-75. PubMed ID: 24408771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Aerobic cometabolic degradation of trichloroethene by methane and ammonia oxidizing microorganisms naturally associated with Carex comosa roots.
    Powell CL; Nogaro G; Agrawal A
    Biodegradation; 2011 Jun; 22(3):527-38. PubMed ID: 20957410
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stoichiometry of methane oxidation in the methane-oxidizing strain M 102 under the influence of various CH4/O2 mixtures.
    Naguib M
    Z Allg Mikrobiol; 1976; 16(6):437-44. PubMed ID: 983129
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gas metabolism in ovine rumen cultures on a nitrogen-deficient medium.
    Jones GA; Taylor A
    Can J Microbiol; 1975 Nov; 21(11):1803-6. PubMed ID: 1201518
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir.
    Long Y; Liu C; Lin H; Li N; Guo Q; Xie S
    Can J Microbiol; 2017 Jun; 63(6):525-534. PubMed ID: 28177782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants.
    Stępniewska Z; Goraj W; Kuźniar A; Łopacka N; Małysza M
    Folia Microbiol (Praha); 2017 Sep; 62(5):381-391. PubMed ID: 28275945
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Death scene gas analysis in suspected methane asphyxia.
    Byard RW; Wilson GW
    Am J Forensic Med Pathol; 1992 Mar; 13(1):69-71. PubMed ID: 1344637
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Determination of the rate of microbiological oxidation of methane using 14CH4].
    Beliaev SS; Laurinavichus KS; Ivanov MV
    Mikrobiologiia; 1975; 44(3):542-5. PubMed ID: 125849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.
    Kessler JD; Valentine DL; Redmond MC; Du M; Chan EW; Mendes SD; Quiroz EW; Villanueva CJ; Shusta SS; Werra LM; Yvon-Lewis SA; Weber TC
    Science; 2011 Jan; 331(6015):312-5. PubMed ID: 21212320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills.
    Perdikea K; Mehrotra AK; Hettiaratchi JP
    Waste Manag; 2008; 28(8):1364-74. PubMed ID: 17851063
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capsulatus.
    Eccleston M; Kelly DP
    J Gen Microbiol; 1973 Mar; 75(1):211-21. PubMed ID: 4722562
    [No Abstract]   [Full Text] [Related]  

  • 52. Simultaneous determination of hydrogen, methane and carbon dioxide of breath using gas-solid chromatography.
    Tsuji K; Shimizu M; Nishimura Y; Nakagawa Y; Ichikawa T
    J Nutr Sci Vitaminol (Tokyo); 1992 Feb; 38(1):103-9. PubMed ID: 1629782
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks.
    Hill EA; Chrisler WB; Beliaev AS; Bernstein HC
    Bioresour Technol; 2017 Mar; 228():250-256. PubMed ID: 28092828
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Use of radioautography for quantitative enumeration of hydrocarbon oxidizing bacteria in underground waters].
    Kuznetsova ZI
    Mikrobiologiia; 1967; 36(3):529-34. PubMed ID: 4888222
    [No Abstract]   [Full Text] [Related]  

  • 55. In vivo conversion of methylene chloride to carbon monoxide.
    Ratney RS; Wegman DH; Elkins HB
    Arch Environ Health; 1974 Apr; 28(4):223-6. PubMed ID: 4814958
    [No Abstract]   [Full Text] [Related]  

  • 56. [Intensities of microbial production and oxidation of methane in bottom sediments and water mass of the Black Sea].
    Gal'chenko VF; Lein AIu; Ivanov MV
    Mikrobiologiia; 2004; 73(2):271-83. PubMed ID: 15198040
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Microbiological processes at the interface of aerobic and anaerobic waters in the deep-water zone of the Black Sea].
    Pimenov NV; Rusanov II; Iusupov SK; Fridrich J; Lein AIu; Wehrli B; Ivanov MV
    Mikrobiologiia; 2000; 69(4):527-40. PubMed ID: 11008690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [The effect of organic substances on the assimilation of methane by obligate methylotrophs].
    Malashenko IuR; Romanovskaia VA; Bogachenko VN; Kryshtab TP
    Mikrobiologiia; 1974 Mar; 43(2):343-8. PubMed ID: 4857241
    [No Abstract]   [Full Text] [Related]  

  • 59. Autonomous growth fluctuations of the methane oxidizing bacterial strain M 102 in batch and continuous culture.
    Krambeck C; Krambeck HJ; Overbeck J
    Arch Microbiol; 1977 Nov; 115(2):119-26. PubMed ID: 596991
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of respiration in compost landfill biocovers intended for methane oxidation.
    Scheutz C; Pedicone A; Pedersen GB; Kjeldsen P
    Waste Manag; 2011 May; 31(5):895-902. PubMed ID: 21292472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.