These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Chemical modification of bovine heart mitochondrial malate dehydrogenase. Selective modification of cysteine and histidine. Gregory EM J Biol Chem; 1975 Jul; 250(14):5470-4. PubMed ID: 237921 [TBL] [Abstract][Full Text] [Related]
8. Characterization of porcine malate dehydrogenase. I. An active center peptide. Gregory EM; Rohrbach MS; Harrison JH Biochim Biophys Acta; 1971 Sep; 243(3):489-97. PubMed ID: 4331622 [No Abstract] [Full Text] [Related]
9. Modulation of heart muscle mitochondrial malate dehydrogenase activity. II. p-Mercuribenzoate activation, model of a possible allosteric control mechanism for substrate homeostasis. Sulebele G; Silverstein E Biochemistry; 1970 Jan; 9(2):283-90. PubMed ID: 4312849 [No Abstract] [Full Text] [Related]
10. Modulation of heart muscle mitochondrial malate dehydrogenase activity. I. Activation and inhibition by p-mercuribenzoate. Silverstein E; Sulebele G Biochemistry; 1970 Jan; 9(2):274-82. PubMed ID: 4312848 [No Abstract] [Full Text] [Related]
11. Malate dehydrogenase. X. Fluorescence microtitration studies of D-malate, hydroxymalonate, nicotinamide dinucleotide, and dihydronicotinamide-adenine dinucleotide binding by mitochondrial and supernatant porcine heart enzymes. Holbrook JJ; Wolfe RG Biochemistry; 1972 Jun; 11(13):2499-502. PubMed ID: 4339243 [No Abstract] [Full Text] [Related]
12. The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids. Michuda CM; Martinez-Carrion M J Biol Chem; 1970 Jan; 245(2):262-9. PubMed ID: 4312670 [No Abstract] [Full Text] [Related]
13. The effects of adenine nucleotides on NADH binding to mitochondrial malate dehydrogenase. Oza NB; Shore JD Arch Biochem Biophys; 1973 Jan; 154(1):360-5. PubMed ID: 4347684 [No Abstract] [Full Text] [Related]
14. The nature of inhibition of mitochondrial malate dehydrogenase by thyroxine, iodine cyanide and molecular iodine. Varrone S; Consiglio E; Covelli I Eur J Biochem; 1970 Apr; 13(2):305-12. PubMed ID: 4314809 [No Abstract] [Full Text] [Related]
15. Selective chemical modification of arginine residues in mitochondrial malate dehydrogenase. Foster M; Harrison JH Biochem Biophys Res Commun; 1974 May; 58(1):263-7. PubMed ID: 4364620 [No Abstract] [Full Text] [Related]
16. A comparison of thiol peptides of heart mitochondrial malate dehydrogenases from pig, chicken, and tuna. Fondy TP; Kitto GB; Driscoll GA Biochemistry; 1970 Feb; 9(4):1001-10. PubMed ID: 5417386 [No Abstract] [Full Text] [Related]
17. Evidence for a methionyl residue in the active site of the cytoplasmic malate dehydrogenase from pig heart. Leskovac V; Pfleiderer G Hoppe Seylers Z Physiol Chem; 1969 Apr; 350(4):484-92. PubMed ID: 4307938 [No Abstract] [Full Text] [Related]
18. Role of tyrosine in the substrate binding site of mitochondrial L-malate dehydrogenase from bovine heart muscle. Siegel L; Ellison JS Biochemistry; 1971 Jul; 10(15):2856-62. PubMed ID: 4329809 [No Abstract] [Full Text] [Related]
19. Inhibition of malate dehydrogenase by platinum(II) complexes. Friedman ME; Musgrove B; Lee K; Teggins JE Biochim Biophys Acta; 1971 Nov; 250(2):286-96. PubMed ID: 4335294 [No Abstract] [Full Text] [Related]