These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 4318488)

  • 1. Augmentation of alkaloid formation from dopamine by alcohol and acetaldehyde in vitro.
    Davis VE; Walsh MJ; Yamanaka Y
    J Pharmacol Exp Ther; 1970 Sep; 174(3):401-12. PubMed ID: 4318488
    [No Abstract]   [Full Text] [Related]  

  • 2. Salsolinol, an alkaloid derivative of dopamine formed in vitro during alcohol metabolism.
    Yamanaka Y; Walsh MJ; Davis VE
    Nature; 1970 Sep; 227(5263):1143-4. PubMed ID: 4317952
    [No Abstract]   [Full Text] [Related]  

  • 3. Tetrahydropapaveroline: an alkaloid metabolite of dopamine in vitro.
    Walsh MJ; Davis VE; Yamanaka Y
    J Pharmacol Exp Ther; 1970 Sep; 174(3):388-400. PubMed ID: 4318487
    [No Abstract]   [Full Text] [Related]  

  • 4. Alcohol addiction and tetrahydropapaveroline.
    Davis VE; Walsh MJ
    Science; 1970 Sep; 169(3950):1105-6. PubMed ID: 5465179
    [No Abstract]   [Full Text] [Related]  

  • 5. Tetrahydroisoquinolines in vivo. I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication.
    Collins MA; Bigdeli MG
    Life Sci; 1975 Feb; 16(4):585-601. PubMed ID: 1168298
    [No Abstract]   [Full Text] [Related]  

  • 6. [The role of acetaldehyde in the effect of alcohol on the central catecholaminergic mechanisms].
    Voloshin PV; Boĭko TP; Bozhko GKh
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1991; 91(10):63-5. PubMed ID: 1665656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alcohol, amines, and alkaloids: a possible biochemical basis for alcohol addiction.
    Davis VE; Walsh MJ
    Science; 1970 Feb; 167(3920):1005-7. PubMed ID: 5460776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alcohol feeding alters (3H)dopamine uptake into rat cortical and brain stem synaptosomes.
    Tan AT; Dular R; Innes IR
    Prog Biochem Pharmacol; 1981; 18():224-30. PubMed ID: 7312868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ethanol and acetaldehyde on gamma-hydroxybutyric acid in rat brain and liver.
    Poldrugo F; Snead OC
    Subst Alcohol Actions Misuse; 1984; 5(5):263-71. PubMed ID: 6543478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of biogenic aldehydes in human blood: effects of ethanol, acetaldehyde and disulfiram.
    Helander A; Tottmar O
    Alcohol Alcohol Suppl; 1987; 1():193-7. PubMed ID: 2447900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of the formation of tetrahydroisoquinoline alkaloids in brain homogenates.
    Alivisatos SG; Ungar F; Callaghan OH; Levitt LP; Tabakoff B
    Can J Biochem; 1973 Jan; 51(1):28-38. PubMed ID: 4689093
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of single administration of ethanol on biogenic amine and pyridine nucleotide levels in the rat brain.
    Hrbek J; Rypka M; Hrbek J
    Acta Univ Palacki Olomuc Fac Med; 1987; 117():105-10. PubMed ID: 2963486
    [No Abstract]   [Full Text] [Related]  

  • 13. [The role of acetaldehyde in the mechanisms of the action of ethanol].
    Bozhko GKh
    Usp Fiziol Nauk; 1990; 21(3):98-116. PubMed ID: 2238811
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of ethanol on membrane lipids. II. Changes in the content and metabolism of aldehydogenic lipids in mouse total liver, mitochondria and microsomes.
    Ferrell WJ; Miceli JN
    Comp Biochem Physiol B; 1972 Jan; 41(1):19-26. PubMed ID: 4335362
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction of catecholamines with acetaldehyde to form tetrahydroisoquinoline neurotransmitters.
    Cohen G
    Prog Clin Biol Res; 1979; 27():73-90. PubMed ID: 424434
    [No Abstract]   [Full Text] [Related]  

  • 16. Decrease in reduced glutathione and NADPH and inhibition of glucose-6-phosphate dehydrogenase activity caused by metabolites of fluroxene and halothane.
    Rosenberg PH
    Ann Med Exp Biol Fenn; 1971; 49(2):84-8. PubMed ID: 4398305
    [No Abstract]   [Full Text] [Related]  

  • 17. Ethanol-induced alteration of dopamine metabolism in rat liver.
    Tank AW; Weiner H
    Biochem Pharmacol; 1979 Oct; 28(20):3139-47. PubMed ID: 518712
    [No Abstract]   [Full Text] [Related]  

  • 18. [Formation ff the beta-adrenergic 3'-deoxy-3-methyl-tetrahydropapaveroline from alpha-methyldopamine and tyramine by incubation with monoamine oxidase preparations].
    Langeneckert W; Palm D
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 260(5):400-15. PubMed ID: 4387689
    [No Abstract]   [Full Text] [Related]  

  • 19. [Effect of acetaldehyde, sodium acetate, ethanol and the combination of ethanol with pyrazole on the manifestation of the cardionecrotic action of adrenaline in rats].
    Nuzhnyĭ VP; Zabirova IG; Abdrashitov AKh
    Patol Fiziol Eksp Ter; 1988; (5):18-20. PubMed ID: 3217145
    [No Abstract]   [Full Text] [Related]  

  • 20. Precise GC/MS assays for salsolinol and tetrahydropapaveroline: the question of artifacts and dietary sources and the influence of alcohol.
    Smythe GA; Duncan MW
    Prog Clin Biol Res; 1985; 183():77-84. PubMed ID: 4048185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.