These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 4318588)

  • 1. The Mn2plus-alkaline phosphatase of E. coli.
    Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588
    [No Abstract]   [Full Text] [Related]  

  • 2. The functional properties of the Zn2(plus)-and Co2(plus)-alkaline phosphatases of Escherichia coli. Labelling of the active site with pyrophosphate, complex formation with arsenate, and reinvestigation of the role of the zinc atoms.
    Petitclerc C; Lazdunski C; Chappelet D; Moulin A; Lazdunski M
    Eur J Biochem; 1970 Jun; 14(2):301-8. PubMed ID: 4319099
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphate binding to alkaline phosphatase. Metal ion dependence.
    Applebury ML; Johnson BP; Coleman JE
    J Biol Chem; 1970 Oct; 245(19):4968-76. PubMed ID: 4319108
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli.
    Brown EM; Ulmer DD; Vallee BL
    Biochemistry; 1974 Dec; 13(26):5328-34. PubMed ID: 4611482
    [No Abstract]   [Full Text] [Related]  

  • 5. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase.
    Csopak H; Drakenberg T
    FEBS Lett; 1973 Mar; 30(3):296-300. PubMed ID: 4573438
    [No Abstract]   [Full Text] [Related]  

  • 6. Negative homotropic interactions in binding of substrate to alkaline phosphatase of Escherichia coli.
    Simpson RT; Valee BL
    Biochemistry; 1970 Feb; 9(4):953-8. PubMed ID: 4906908
    [No Abstract]   [Full Text] [Related]  

  • 7. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli.
    Simpson RT; Vallee BL
    Biochemistry; 1968 Dec; 7(12):4343-50. PubMed ID: 4882708
    [No Abstract]   [Full Text] [Related]  

  • 8. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity.
    Lazdunski C; Petitclerc C; Chappelet D; Lazdunski M
    Biochem Biophys Res Commun; 1969 Nov; 37(5):744-9. PubMed ID: 4900985
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Nov; 8(11):4278-82. PubMed ID: 4900990
    [No Abstract]   [Full Text] [Related]  

  • 10. Phosphorus-31 relaxation rate studies of Mn 2+-alkaline phosphatase.
    Zukin RS; Hollis DB; Gray GA
    Biochem Biophys Res Commun; 1973 Jul; 53(1):239-43. PubMed ID: 4582371
    [No Abstract]   [Full Text] [Related]  

  • 11. Structure-function relationships for some metalloalkaline phosphatases of E. coli.
    Lazdunski C; Petitclerc C; Lazdunski M
    Eur J Biochem; 1969 Apr; 8(4):510-7. PubMed ID: 4978714
    [No Abstract]   [Full Text] [Related]  

  • 12. A dipeptidase from Escherichia coli B.
    Patterson EK
    Methods Enzymol; 1976; 45():377-86. PubMed ID: 13264
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of magnesium in Escherichia coli alkaline phosphatase.
    Anderson RA; Bosron WF; Kennedy FS; Vallee BL
    Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2989-93. PubMed ID: 1103131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanistic significance of phosphate labeling of alkaline phosphatase.
    Reid TW; Pavlic M; Sullivan DJ; Wilson IB
    Biochemistry; 1969 Aug; 8(8):3184-8. PubMed ID: 4897329
    [No Abstract]   [Full Text] [Related]  

  • 15. Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure.
    Applebury ML; Coleman JE
    J Biol Chem; 1969 Jan; 244(2):308-18. PubMed ID: 4886432
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanisms of hydrolysis of O-phosphorothioates and inorganic thiophosphate by Escherichia coli alkaline phosphatase.
    Chlebowski JF; Coleman JE
    J Biol Chem; 1974 Nov; 249(22):7192-202. PubMed ID: 4612034
    [No Abstract]   [Full Text] [Related]  

  • 17. Zn2+ and Co2+-alkaline phosphatases of E. coli. A comparative kinetic study.
    Lazdunski C; Lazdunski M
    Eur J Biochem; 1969 Jan; 7(2):294-300. PubMed ID: 4885467
    [No Abstract]   [Full Text] [Related]  

  • 18. Conformational states of the subunit of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1967 Nov; 6(11):3552-9. PubMed ID: 4864145
    [No Abstract]   [Full Text] [Related]  

  • 19. Allosteric interactions between metal ion and phosphate at the active sites of alkaline phosphatase as determined by 31P NMR and 113Cd NMR.
    Chlebowski JF; Armitage IM; Coleman JE
    J Biol Chem; 1977 Oct; 252(20):7053-61. PubMed ID: 20443
    [No Abstract]   [Full Text] [Related]  

  • 20. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid.
    Lindahl T; Andersson A
    Biochemistry; 1972 Sep; 11(19):3618-23. PubMed ID: 4559796
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.