BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 4322039)

  • 1. Kinetic studies of formate dehydrogenase.
    Peacock D; Boulter D
    Biochem J; 1970 Dec; 120(4):763-9. PubMed ID: 4322039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii.
    Kato N; Sahm H; Wagner F
    Biochim Biophys Acta; 1979 Jan; 566(1):12-20. PubMed ID: 215230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus.
    Ruschig U; Müller U; Willnow P; Höpner T
    Eur J Biochem; 1976 Nov; 70(2):325-30. PubMed ID: 12947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient-kinetic studies of pig muscle lactate dehydrogenase.
    Stinson RA; Gutfreund H
    Biochem J; 1971 Jan; 121(2):235-40. PubMed ID: 4330089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enoyl-ACP reductase (FabI) of Haemophilus influenzae: steady-state kinetic mechanism and inhibition by triclosan and hexachlorophene.
    Marcinkeviciene J; Jiang W; Kopcho LM; Locke G; Luo Y; Copeland RA
    Arch Biochem Biophys; 2001 Jun; 390(1):101-8. PubMed ID: 11368521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formate dehydrogenase. Subunit and mechanism of inhibition by cyanide and azide.
    Ohyama T; Yamazaki I
    J Biochem; 1975 Apr; 77(4):845-52. PubMed ID: 168190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formate dehydrogenase from Clostridium acidiurici.
    Kearny JJ; Sagers RD
    J Bacteriol; 1972 Jan; 109(1):152-61. PubMed ID: 4333376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The resolution of some steps of the reactions of lactate dehydrogenase with its substrates.
    Heck HD; McMurray CH; Gutfreund H
    Biochem J; 1968 Aug; 108(5):793-6. PubMed ID: 4299820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. D-3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Kinetics of radioisotope redistribution at chemical equilibrium catalysed by the enzyme in solutions.
    Preuveneers MJ; Peacock D; Crook EM; Clark JB; Brocklehurst K
    Biochem J; 1973 May; 133(1):159-64. PubMed ID: 4352836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic regulation in Pseudomonas oxalaticus OX1. Enzyme and coenzyme concentration changes during substrate transition experiments.
    Knight M; Dijkhuizen L; Harder W
    Arch Microbiol; 1978 Jan; 116(1):85-90. PubMed ID: 203239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on kinetic parameters of NAD+-dependent formate dehydrogenase.
    Mesentsev AV; Lamzin VS; Tishkov VI; Ustinnikova TB; Popov VO
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):475-80. PubMed ID: 9020883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the role of arginine residues in bacterial formate dehydrogenase.
    Egorov AM; Tishkov VI; Popov VO; Berezin IV
    Biochim Biophys Acta; 1981 May; 659(1):141-9. PubMed ID: 7248314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bacterial hydrogen-dependent CO2 reductase forms filamentous structures.
    Schuchmann K; Vonck J; Müller V
    FEBS J; 2016 Apr; 283(7):1311-22. PubMed ID: 26833643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The elementary reactions of the pig heart pyruvate dehydrogenase complex. A study of the inhibition by phosphorylation.
    Walsh DA; Cooper RH; Denton RM; Bridges BJ; Randle PJ
    Biochem J; 1976 Jul; 157(1):41-67. PubMed ID: 183746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanisms of reductive carboxylation reactions. Carbon dioxide or bicarbonate as substrate of nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase and malic enzyme.
    Dalziel K; Londesborough JC
    Biochem J; 1968 Nov; 110(2):223-30. PubMed ID: 4387225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and reaction mechanism of yeast alcohol dehydrogenase with long-chain primary alcohols.
    Schöpp W; Aurich H
    Biochem J; 1976 Jul; 157(1):15-22. PubMed ID: 183740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pH-dependent binding of NADH and subsequent enzyme isomerization of human liver beta 3 beta 3 alcohol dehydrogenase.
    Stone CL; Jipping MB; Owusu-Dekyi K; Hurley TD; Li TK; Bosron WF
    Biochemistry; 1999 May; 38(18):5829-35. PubMed ID: 10231534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.