BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 4322761)

  • 1. Cardiolipin content of wild type and mutant yeasts in relation to mitochondrial function and development.
    Jakovcic S; Getz GS; Rabinowitz M; Jakob H; Swift H
    J Cell Biol; 1971 Mar; 48(3):490-502. PubMed ID: 4322761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of mitochondrial membranes in anaerobically grown yeast cells.
    Nagata I; Furuya E; Yoshida Y; Kanaseki T; Tagawa K
    J Biochem; 1975 Dec; 78(6):1353-64. PubMed ID: 131794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells.
    Jollow D; Kellerman GM; Linnane AW
    J Cell Biol; 1968 May; 37(2):221-30. PubMed ID: 4297785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACRIFLAVINE INDUCTION OF DIFFERENT KINDS OF "PETITE" MITOCHONDRIAL POPULATIONS IN SACCHAROMYCES CEREVISIAE.
    AVERS CJ; PFEFFER CR; RANCOURT MW
    J Bacteriol; 1965 Aug; 90(2):481-94. PubMed ID: 14329464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae.
    Tuller G; Hrastnik C; Achleitner G; Schiefthaler U; Klein F; Daum G
    FEBS Lett; 1998 Jan; 421(1):15-8. PubMed ID: 9462830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of cytochrome c peroxidase activity in wild-type and petite cells of bakers' yeast grown aerobically and anaerobically.
    Avers CJ
    J Bacteriol; 1967 Oct; 94(4):1225-35. PubMed ID: 4293080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of phosphatidylglycerolphosphate synthase in Saccharomyces cerevisiae by factors affecting mitochondrial development.
    Gaynor PM; Hubbell S; Schmidt AJ; Lina RA; Minskoff SA; Greenberg ML
    J Bacteriol; 1991 Oct; 173(19):6124-31. PubMed ID: 1655699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid accumulation during the cell cycle in synchronous cultures of the yeast, Saccharomyces cerevisiae.
    Cottrell SF; Getz GS; Rabinowitz M
    J Biol Chem; 1981 Nov; 256(21):10973-8. PubMed ID: 6270139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intramitochondrial location of cytochrome c peroxidase in wild-type and petite Saccharomyces cerevisiae.
    Williams PG; Stewart PR
    Arch Microbiol; 1976 Feb; 107(1):63-70. PubMed ID: 175751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth of eukaryotic cells in relation to the structure of mitochondrial membranes and mitochondrial genome.
    Gbelská Y; Obernauerová M; Subík J
    Folia Microbiol (Praha); 1999; 44(6):697-702. PubMed ID: 11097029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid composition of subcellular membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources.
    Tuller G; Nemec T; Hrastnik C; Daum G
    Yeast; 1999 Oct; 15(14):1555-64. PubMed ID: 10514572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipid, enzymatic, and polypeptide analyses of the mitochondrial membranes from Saccharomyces carlsbergensis.
    Bednarz-Prashad AJ; Mize CE
    Biochemistry; 1978 Oct; 17(20):4178-86. PubMed ID: 213105
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolic control analysis of the bc1 complex of Saccharomyces cerevisiae: effect on cytochrome c oxidase, respiration and growth rate.
    Boumans H; Berden JA; Grivell LA; van Dam K
    Biochem J; 1998 May; 331 ( Pt 3)(Pt 3):877-83. PubMed ID: 9560317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipids and structural protein of mitochondria from wild-type yeast and a mutant deficient in oxidative phosphorylation.
    Kovác L; Poláková K; Smigán P; Kuzela S
    Antonie Van Leeuwenhoek; 1969 Jun; 35():Suppl:G11-2. PubMed ID: 5311997
    [No Abstract]   [Full Text] [Related]  

  • 15. Specific degradation of phosphatidylglycerol is necessary for proper mitochondrial morphology and function.
    Pokorná L; Čermáková P; Horváth A; Baile MG; Claypool SM; Griač P; Malínský J; Balážová M
    Biochim Biophys Acta; 2016 Jan; 1857(1):34-45. PubMed ID: 26482708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of the transcriptional regulator opi1p decreases cardiolipin content and disrupts mitochondrial metabolism in Saccharomyces cerevisiae.
    Luévano-Martínez LA; Appolinario P; Miyamoto S; Uribe-Carvajal S; Kowaltowski AJ
    Fungal Genet Biol; 2013 Nov; 60():150-8. PubMed ID: 23578934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biogenesis of mitochondria. II. The influence of medium composition on the cytology of anaerobically grown Saccharomyces cerevisiae.
    Wallace PG; Huang M; Linnane AW
    J Cell Biol; 1968 May; 37(2):207-20. PubMed ID: 5656393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardiolipin synthesis during the cell cycle of the yeast Saccharomyces cervisiae.
    Greksák M; Nejedlý K; Zborowski J
    Folia Microbiol (Praha); 1977; 22(1):30-4. PubMed ID: 190090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mitochondrial biogenesis. Occurrence of non-functioning components of the mitochondrial respiratory chain in Saccharomyces cerevisiae grown in the presence of proteinase inhibitors: evidence for proteolytic control over assembly of the respiratory chain.
    Galkin AV; Tsoi TV; Luzikov VN
    Biochem J; 1980 Jul; 190(1):145-56. PubMed ID: 7004440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells.
    Clark-Walker GD; Linnane AW
    J Cell Biol; 1967 Jul; 34(1):1-14. PubMed ID: 6033531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.