These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 432330)

  • 1. Bone regeneration within a coralline hydroxyapatite implant.
    Holmes RE
    Plast Reconstr Surg; 1979 May; 63(5):626-33. PubMed ID: 432330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous hydroxyapatite as a bone graft substitute in diaphyseal defects: a histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Orthop Res; 1987; 5(1):114-21. PubMed ID: 3029358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone regeneration in a coralline hydroxyapatite implant.
    Holmes RE; Salyer KE
    Surg Forum; 1978; 29():611-2. PubMed ID: 45586
    [No Abstract]   [Full Text] [Related]  

  • 4. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study.
    Holmes RE; Bucholz RW; Mooney V
    J Bone Joint Surg Am; 1986 Jul; 68(6):904-11. PubMed ID: 3015975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coralline hydroxyapatite bone graft substitutes in a canine metaphyseal defect model: radiographic-biomechanical correlation.
    Sartoris DJ; Holmes RE; Tencer AF; Mooney V; Resnick D
    Skeletal Radiol; 1986; 15(8):635-41. PubMed ID: 3810188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guided bone regeneration around titanium plasma-sprayed, acid-etched, and hydroxyapatite-coated implants in the canine model.
    Conner KA; Sabatini R; Mealey BL; Takacs VJ; Mills MP; Cochran DL
    J Periodontol; 2003 May; 74(5):658-68. PubMed ID: 12816298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coralline hydroxyapatite bone graft substitutes in a canine diaphyseal defect model: radiographic features of failed and successful union.
    Sartoris DJ; Holmes RE; Bucholz RW; Resnick D
    Skeletal Radiol; 1986; 15(8):642-7. PubMed ID: 3810189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute.
    Shimazaki K; Mooney V
    J Orthop Res; 1985; 3(3):301-10. PubMed ID: 2411894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An oxidized implant surface may improve bone-to-implant contact in pristine bone and bone defects treated with guided bone regeneration: an experimental study in dogs.
    Gurgel BC; Gonçalves PF; Pimentel SP; Nociti FH; Sallum EA; Sallum AW; Casati MZ
    J Periodontol; 2008 Jul; 79(7):1225-31. PubMed ID: 18597605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation.
    Sartoris DJ; Holmes RE; Bucholz RW; Mooney V; Resnick D
    Invest Radiol; 1987 Jul; 22(7):590-6. PubMed ID: 3623863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmentation of the edentulous mandible using bone and hydroxyapatite: a comparative study in dogs.
    Frame JW; Brady CL; Browne RM
    Int J Oral Surg; 1981; 10(Suppl 1):88-92. PubMed ID: 6284669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of parathyroid hormone (1-34) and coralline hydroxyapatite on bone regeneration of peri-implant bone defects].
    Xue Y; Zhang H; Che Y; Cai Q; Zhou Y; Meng W
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2015 Feb; 50(2):99-102. PubMed ID: 25908194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpositional "grafting" with autogenous bone and coralline hydroxyapatite.
    Finn RA; Bell WH; Brammer JA
    J Maxillofac Surg; 1980 Aug; 8(3):217-27. PubMed ID: 6999109
    [No Abstract]   [Full Text] [Related]  

  • 14. Biomaterial aspects of Interpore-200 porous hydroxyapatite.
    White E; Shors EC
    Dent Clin North Am; 1986 Jan; 30(1):49-67. PubMed ID: 3514293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo.
    Du B; Liu W; Deng Y; Li S; Liu X; Gao Y; Zhou L
    Int J Nanomedicine; 2015; 10():2555-65. PubMed ID: 25848271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-dried bone and coralline implants compared in the dog.
    West TL; Brustein DD
    J Periodontol; 1985 Jun; 56(6):348-51. PubMed ID: 2989477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of recombinant human growth/differentiation factor-5 (rhGDF-5) on bone regeneration around titanium dental implants in barrier membrane-protected defects: a pilot study in the mandible of beagle dogs.
    Weng D; Poehling S; Pippig S; Bell M; Richter EJ; Zuhr O; Hürzeler MB
    Int J Oral Maxillofac Implants; 2009; 24(1):31-7. PubMed ID: 19344022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of peri-implantitis using guided bone regeneration and bone grafts, alone or in combination, in beagle dogs. Part 2: Histologic findings.
    Hürzeler MB; Quiñones CR; Schüpback P; Morrison EC; Caffesse RG
    Int J Oral Maxillofac Implants; 1997; 12(2):168-75. PubMed ID: 9109266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mandibular bone regeneration with autologous adipose-derived mesenchymal stem cells and coralline hydroxyapatite: experimental study in rats.
    Barrientos-Lezcano FJ; Redondo-González LM; Alberca-Zeballos M; Sánchez-García AM; García-Sancho J
    Br J Oral Maxillofac Surg; 2021 Dec; 59(10):1192-1199. PubMed ID: 34663526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Experimental study of the shaped titanium mesh combined with autogenous particulate bone graft and simultaneous implant for reconstructing segmental mandibular defect].
    Chen N; Guo JL; Zhang SY; Tao JF; Du YF
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2009 Jun; 44(6):360-4. PubMed ID: 19953956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.