These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 4323307)

  • 41. A dual effect of repetitive stimulation on post-tetanic potentiation of transmitter release at the frog neuromuscular junction.
    Magleby KL; Zengel JE
    J Physiol; 1975 Feb; 245(1):163-82. PubMed ID: 165285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural and functional changes of frog neuromuscular junctions in high calcium solutions.
    Heuser J; Katz B; Miledi R
    Proc R Soc Lond B Biol Sci; 1971 Sep; 178(1053):407-15. PubMed ID: 4398677
    [No Abstract]   [Full Text] [Related]  

  • 43. The origin of the post-tetanic hyperpolarization of mammalian motor nerve terminals.
    Gage PW; Hubbard JI
    J Physiol; 1966 May; 184(2):335-52. PubMed ID: 5921834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Noradrenaline augments tetanic potentiation of transmitter release by a calcium dependent process.
    Bergman H; Glusman S; Harris-Warrick RM; Kravitz EA; Nussinovitch I; Rahamimoff R
    Brain Res; 1981 Jun; 214(1):200-4. PubMed ID: 6263418
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium in motor nerve terminals associated with posttetanic potentiation.
    Delaney KR; Zucker RS; Tank DW
    J Neurosci; 1989 Oct; 9(10):3558-67. PubMed ID: 2795140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An analysis of the role of calcium in facilitation at the frog neuromuscular junction.
    Younkin SG
    J Physiol; 1974 Feb; 237(1):1-14. PubMed ID: 4545024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrophysiological observations on the action of the purified scorpion venom, tityustoxin, on nerve and skeletal muscle of the rat.
    Warnick JE; Albuquerque EX; Diniz CR
    J Pharmacol Exp Ther; 1976 Jul; 198(1):155-67. PubMed ID: 180278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Frequency facilitation and post-tetanic potentiation of a unitary synaptic potential in Aplysia californica are limited by different processes.
    Schlapfer WT; Tremblay JP; Woodson PB; Barondes SH
    Brain Res; 1976 Jun; 109(1):1-20. PubMed ID: 179665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of calcium in neuromuscular facilitation.
    Katz B; Miledi R
    J Physiol; 1968 Mar; 195(2):481-92. PubMed ID: 4296699
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A study of synaptic transmission in the absence of nerve impulses.
    Katz B; Miledi R
    J Physiol; 1967 Sep; 192(2):407-36. PubMed ID: 4383089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of botulinum toxin on neuromuscular transmission in the rat.
    Cull-Candy SG; Lundh H; Thesleff S
    J Physiol; 1976 Aug; 260(1):177-203. PubMed ID: 184273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The interaction of presynaptic polarization with calcium and magnesium in modifying spontaneous transmitter release from mammalian motor nerve terminals.
    Landau EM
    J Physiol; 1969 Aug; 203(2):281-99. PubMed ID: 4307709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of 2-(4-phenylpiperidino)cyclohexanol (AH5183) and barium ions on frog neuromuscular transmission.
    Maeno T; Shibuya Y
    J Physiol; 1988 Jul; 401():671-85. PubMed ID: 2845067
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Presynaptic membrane potential and transmitter release at the crayfish neuromuscular junction.
    Wojtowicz JM; Atwood HL
    J Neurophysiol; 1984 Jul; 52(1):99-113. PubMed ID: 6086856
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrical excitability of motor nerve terminals in the mouse.
    Konishi T
    J Physiol; 1985 Sep; 366():411-21. PubMed ID: 4057095
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vecuronium suppresses transmission at the rat phrenic neuromuscular junction by inhibiting presynaptic L-type calcium channels.
    Ji F; Han J; Liu B; Wang H; Shen G; Tao J
    Neurosci Lett; 2013 Jan; 533():1-6. PubMed ID: 23200725
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amplitude and rate of decay of post-tetanic potentiation are controlled by different mechanisms.
    Woodson PB; Schlapfer WT; Barondes SH
    Brain Res; 1978 Nov; 157(1):33-46. PubMed ID: 29698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An investigation of the post-tetanic potentiation of end-plate potentials at a mammalian neuromuscular junction.
    Gage PW; Hubbard JI
    J Physiol; 1966 May; 184(2):353-75. PubMed ID: 5921835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.