These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 4323635)

  • 1. Glycine reabsorption in rat proximal tubules. Microperfusion studies.
    Silbernagl S; Deetjen P
    Pflugers Arch; 1971; 323(4):342-50. PubMed ID: 4323635
    [No Abstract]   [Full Text] [Related]  

  • 2. [Micropuncture studies on proximal tubular reabsorption of glycine].
    Silbernagl S; Deetjen P
    Pflugers Arch; 1969; 312(1):R82. PubMed ID: 5390303
    [No Abstract]   [Full Text] [Related]  

  • 3. Microperfusion study of fluid reabsorption in proximal tubules of rat kidneys.
    Wiederholt M; Hierholzer K; Windhager EE; Giebisch G
    Am J Physiol; 1967 Sep; 213(3):809-18. PubMed ID: 6036804
    [No Abstract]   [Full Text] [Related]  

  • 4. Transport of amino acids by isolated rabbit renal tubules.
    Hillman RE; Albrecht I; Rosenberg LE
    Biochim Biophys Acta; 1968 Apr; 150(3):528-30. PubMed ID: 5650401
    [No Abstract]   [Full Text] [Related]  

  • 5. [Kinetic study of D-glucose reabsorption in the proximal convoluted tubule of rat kidney].
    Loeschke K; Baumann K
    Pflugers Arch; 1969; 305(2):139-54. PubMed ID: 5812808
    [No Abstract]   [Full Text] [Related]  

  • 6. [Effect of changes in sodium concentration of the perfusion medium and of strophanthin on glucose resorption by the islated rat kidney].
    Ruedas G; Weiss C
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 298(1):12-22. PubMed ID: 4234973
    [No Abstract]   [Full Text] [Related]  

  • 7. Micropuncture and microperfusion study of L-glucose secretion in rat kidney.
    Baumann K; Huang KC
    Pflugers Arch; 1969; 305(2):155-66. PubMed ID: 5812809
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification and analysis of multiple glycine transport systems in isolated mammalian renal tubules.
    Hillman RE; Albrecht I; Rosenberg LE
    J Biol Chem; 1968 Nov; 243(21):5566-71. PubMed ID: 4301681
    [No Abstract]   [Full Text] [Related]  

  • 9. The tubular reabsorption of L-cystine and L-cysteine. A common transport system with L-arginine or not?
    Silbernagl S; Deetjen P
    Pflugers Arch; 1972; 337(4):277-84. PubMed ID: 4674878
    [No Abstract]   [Full Text] [Related]  

  • 10. L-arginine transport in rat proximal tubules. Microperfusion studies on reabsorption kinetics.
    Silbernagl S; Deetjen P
    Pflugers Arch; 1972; 336(1):79-86. PubMed ID: 4673223
    [No Abstract]   [Full Text] [Related]  

  • 11. Characteristics of p-aminohippurate transport in proximal renal tubules.
    Tune BM; Burg MB; Patlak CS
    Am J Physiol; 1969 Oct; 217(4):1057-63. PubMed ID: 5824305
    [No Abstract]   [Full Text] [Related]  

  • 12. Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: the effect of K, ouabain and ethacrynic acid.
    Whittembury G; Fishman J
    Pflugers Arch; 1969; 307(3):138-53. PubMed ID: 4238338
    [No Abstract]   [Full Text] [Related]  

  • 13. Glucose reabsorption in the rat kidney. Microperfusion studies.
    Deetjen P; Boylan JW
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1968; 299(1):19-29. PubMed ID: 5243669
    [No Abstract]   [Full Text] [Related]  

  • 14. Stop-flow microperfusion of proximal tubules in rat kidney cortex slices.
    Maude DL
    Am J Physiol; 1968 Jun; 214(6):1315-21. PubMed ID: 5649485
    [No Abstract]   [Full Text] [Related]  

  • 15. [Differentiation of the active and passive components of D-glucose transport in the proximal tubule of rat kidney].
    Loeschke K; Baumann K; Renschler H; Ullrich KJ
    Pflugers Arch; 1969; 305(2):118-38. PubMed ID: 5812807
    [No Abstract]   [Full Text] [Related]  

  • 16. Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: evidence that the proximal convolution is not homogeneous.
    Lingard J; Rumrich G; Young JA
    Pflugers Arch; 1973 Jul; 342(1):1-12. PubMed ID: 4738964
    [No Abstract]   [Full Text] [Related]  

  • 17. Qualitative and quantitative importance of the constituents used in microperfusion experiments.
    Kokko JP
    Yale J Biol Med; 1972; 45(3-4):332-8. PubMed ID: 4638655
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of ouabain on potassium exchange in renal tubules: an effect preceded by alteration in calcium exchange.
    Hoskins B
    Arch Int Pharmacodyn Ther; 1970 Dec; 188(2):349-55. PubMed ID: 5523477
    [No Abstract]   [Full Text] [Related]  

  • 19. Net fluid secretion in proximal straight renal tubules in vitro: role of PAH.
    Grantham JJ; Qualizza PB; Irwin RL
    Am J Physiol; 1974 Jan; 226(1):191-7. PubMed ID: 4809880
    [No Abstract]   [Full Text] [Related]  

  • 20. Peritubular control of proximal tubular fluid reabsorption in the rat kidney.
    Lewy JE; Windhager EE
    Am J Physiol; 1968 May; 214(5):943-54. PubMed ID: 5647198
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.