These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 4323694)

  • 1. A low potential photosystem in Chromatium D.
    Seibert M; Dutton PL; Devault D
    Biochim Biophys Acta; 1971 Jan; 226(1):189-92. PubMed ID: 4323694
    [No Abstract]   [Full Text] [Related]  

  • 2. Fast membrane H+ binding in the light-activated state of Chromatium chromatophores.
    Chance B; Crofts AR; Nishimura M; Price B
    Eur J Biochem; 1970 Apr; 13(2):364-74. PubMed ID: 5439938
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytochrome C553 and bacteriochlorophyll interaction at 77 K in chromatophores and a subchromatophore preparation from Chromatium D.
    Dutton PL; Kihara T; McCray JA; Thornber JP
    Biochim Biophys Acta; 1971 Jan; 226(1):81-7. PubMed ID: 5549986
    [No Abstract]   [Full Text] [Related]  

  • 4. The reaction between primary and secondary electron acceptors in bacterial photosynthesis.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):384-96. PubMed ID: 5363976
    [No Abstract]   [Full Text] [Related]  

  • 5. The primary electron acceptor in photosynthesis.
    Leigh JS; Dutton PL
    Biochem Biophys Res Commun; 1972 Jan; 46(2):414-21. PubMed ID: 4333415
    [No Abstract]   [Full Text] [Related]  

  • 6. Some effects of o-phenanthroline on electron transport in chromatophores from photosynthetic bacteria.
    Jackson JB; Cogdell RJ; Crofts AR
    Biochim Biophys Acta; 1973 Jan; 292(1):218-25. PubMed ID: 4705131
    [No Abstract]   [Full Text] [Related]  

  • 7. Redox properties of the "P-836" pigment complex of Chromatium.
    Schmidt GL; Kamen MD
    Biochim Biophys Acta; 1971 Apr; 234(1):70-2. PubMed ID: 5560363
    [No Abstract]   [Full Text] [Related]  

  • 8. Oxidation-reduction potential dependence of the interaction of cytochromes, bacteriochlorophyll and carotenoids at 77 degrees K in chromatophores of Chromatium D and Rhodopseudomonas gelatinosa.
    Dutton PL
    Biochim Biophys Acta; 1971 Jan; 226(1):63-80. PubMed ID: 5549985
    [No Abstract]   [Full Text] [Related]  

  • 9. Redistribution of electric charge accompanying photosynthetic electron transport in Chromatium.
    Case GD; Parson WW
    Biochim Biophys Acta; 1973 Apr; 292(3):677-84. PubMed ID: 4705448
    [No Abstract]   [Full Text] [Related]  

  • 10. Light-induced electron transefer in Chromatium strain D. 3. Photophosphorylation by Chromatium chromatophores.
    Cusanovich MA; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):418-26. PubMed ID: 4384457
    [No Abstract]   [Full Text] [Related]  

  • 11. Fluorescence of bacteriochlorophyll as related to the photochemistry of chromatophores of photosynthetic bacteria.
    Suzuki Y; Takamiya A
    Biochim Biophys Acta; 1972 Sep; 275(3):358-68. PubMed ID: 4627083
    [No Abstract]   [Full Text] [Related]  

  • 12. Cytochrome photooxidations in Chromatiumchromatophores. Each P870 oxidizes two cytochrome C422 hemes.
    Parson WW
    Biochim Biophys Acta; 1969; 189(3):397-403. PubMed ID: 5363977
    [No Abstract]   [Full Text] [Related]  

  • 13. Nature of the primary electron acceptor in bacterial photosynthesis.
    Ke B
    Biochim Biophys Acta; 1969 Apr; 172(3):583-5. PubMed ID: 5782255
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of primary photosynthetic processes.
    Leigh JS; Dutton PL
    Ann N Y Acad Sci; 1973 Dec; 222():838-45. PubMed ID: 4361883
    [No Abstract]   [Full Text] [Related]  

  • 15. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum.
    Halsey YD; Parson WW
    Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890
    [No Abstract]   [Full Text] [Related]  

  • 16. Nicotinamide adenine dinucleotide photoreduction with Chromatium and Rhodospirillum rubrum chromatophores.
    Hinkson JW
    Arch Biochem Biophys; 1965 Dec; 112(3):478-87. PubMed ID: 4286495
    [No Abstract]   [Full Text] [Related]  

  • 17. Regulation of electron transfer by sidedness-dependent surface pH. Dependence of the rate of cytochrome c-555 reduction on H+ concentration in the surface region on the periplasmic side of photosynthetic membranes in whole cells, spheroplasts and chromatophores of Chromatium vinosum.
    Hashimoto K; Nishimura M
    J Biochem; 1981 Mar; 89(3):909-18. PubMed ID: 6270069
    [No Abstract]   [Full Text] [Related]  

  • 18. Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll.
    Dutton PL; Leight JS; Seibert M
    Biochem Biophys Res Commun; 1972 Jan; 46(2):406-13. PubMed ID: 4333414
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of electron transfer in Chromatium vinosum chromatophores by intravesicular H+ concentration.
    Hashimoto K; Nishimura M
    J Biochem; 1979 Jan; 85(1):57-64. PubMed ID: 33164
    [No Abstract]   [Full Text] [Related]  

  • 20. Fast changes of enthalpy and volume on flash excitation of Chromatium chromatophores.
    Callis JB; Parson WW; Gouterman M
    Biochim Biophys Acta; 1972 May; 267(2):348-62. PubMed ID: 5042840
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.