BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 4323963)

  • 1. Respiratory chain of a pathogenic fungus, Microsporum gypseum: effect of the antifungal agent pyrrolnitrin.
    Wong DT; Horng JS; Gordee RS
    J Bacteriol; 1971 Apr; 106(1):168-73. PubMed ID: 4323963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of action of the antifungal antibiotic pyrrolnitrin.
    Tripathi RK; Gottlieb D
    J Bacteriol; 1969 Oct; 100(1):310-8. PubMed ID: 4310080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pyrrolnitrin on electron transport and oxidative phosphorylation in mitochondria isolated from Neurospora crassa.
    Lambowitz AM; Slayman CW
    J Bacteriol; 1972 Nov; 112(2):1020-2. PubMed ID: 4343822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RESPIRATORY PATHWAYS IN THE MYCOPLASMA. II. PATHWAY OF ELECTRON TRANSPORT DURING OXIDATION OF REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE BY MYCOPLASMA HOMINIS.
    VANDEMARK PJ; SMITH PF
    J Bacteriol; 1964 Jul; 88(1):122-9. PubMed ID: 14197876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electron transport system of the anaerobic Propionibacterium shermanii: cytochrome and inhibitor studies.
    Schwartz AC; Sporkenbach J
    Arch Microbiol; 1975 Mar; 102(3):261-73. PubMed ID: 168827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respiratory mechanisms in the Flexibacteriaceae: terminal oxidase systems of Saprospira grandis and Vitreoscilla species.
    Dietrich WE; Biggins J
    J Bacteriol; 1971 Mar; 105(3):1083-9. PubMed ID: 4323292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of NADH by a rotenone and antimycin-sensitive pathway in the mitochondrion of procyclic Trypanosoma brucei brucei.
    Beattie DS; Obungu VH; Kiaira JK
    Mol Biochem Parasitol; 1994 Mar; 64(1):87-94. PubMed ID: 8078526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid reduction of cytochrome c1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain.
    Bowyer JR; Trumpower BL
    J Biol Chem; 1981 Mar; 256(5):2245-51. PubMed ID: 6257713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of the energy-transfer system of submitochondrial particles. Kinetic studies of the effect of oligomycin on the respiratory chain of EDTA particles.
    Lee CP; Ernster L; Chance B
    Eur J Biochem; 1969 Mar; 8(2):153-63. PubMed ID: 4305534
    [No Abstract]   [Full Text] [Related]  

  • 11. Energy transduction in photosynthetic bacteria. X. Composition and function of the branched oxidase system in wild type and respiration deficient mutants of Rhodopseudomonas capsulata.
    Zannoni D; Melandri BA; Baccarini-Melandri A
    Biochim Biophys Acta; 1976 Mar; 423(3):413-30. PubMed ID: 177045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The intra-mitochondrial localization of flavoproteins previously assigned to the respiratory chain.
    Ragan CI; Garland PB
    Eur J Biochem; 1969 Oct; 10(3):399-410. PubMed ID: 4310544
    [No Abstract]   [Full Text] [Related]  

  • 13. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilization of iron and its complexes by mammalian mitochondria.
    Barnes R; Connelly JL; Jones OT
    Biochem J; 1972 Aug; 128(5):1043-55. PubMed ID: 4345350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase.
    Davies KJ; Doroshow JH
    J Biol Chem; 1986 Mar; 261(7):3060-7. PubMed ID: 3456345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies with ubiquinone-depleted submitochondrial particles. Essentiality of ubiquinone for the interaction of succinate dehydrogenase, NADH dehydrogenase, and cytochrome b.
    Ernster L; Lee IY; Norling B; Persson B
    Eur J Biochem; 1969 Jun; 9(3):299-310. PubMed ID: 4307591
    [No Abstract]   [Full Text] [Related]  

  • 17. Antimycin A treatment decreases respiratory internal rotenone-insensitive NADH oxidation capacity in potato leaves.
    Geisler DA; Johansson FI; Svensson AS; Rasmusson AG
    BMC Plant Biol; 2004 May; 4():8. PubMed ID: 15140267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mode of action of oxathiin systemic fungicides. V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae.
    Ulrich JT; Mathre DE
    J Bacteriol; 1972 May; 110(2):628-32. PubMed ID: 4336692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of respiratory components and oxidative phosphorylation in mitochondria of mi-1 Neurospora crassa.
    Drabikowska A; Kosmakos FC; Brodie AF
    J Bacteriol; 1974 Feb; 117(2):733-40. PubMed ID: 4359654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.