BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4324808)

  • 1. Specificity of a catabolic pathway--a lesson learned from indirect assays.
    Ribbons DW; Ota Y; Higgins IJ
    J Bacteriol; 1971 May; 106(2):702-3. PubMed ID: 4324808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of resorcinylic compounds by bacteria. Purification and properties of orcinol hydroxylase from Pseudomonas putida 01.
    Ohta Y; Higgins I; Ribbons DW
    J Biol Chem; 1975 May; 250(10):3814-25. PubMed ID: 1126936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of resorcinylic compounds by bacteria: orcinol pathway in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):975-84. PubMed ID: 1254564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of phenols by intact cells and cell-free preparations of Trichosporon cutaneum.
    Neujahr HY; Varga JM
    Eur J Biochem; 1970 Mar; 13(1):37-44. PubMed ID: 4392441
    [No Abstract]   [Full Text] [Related]  

  • 5. Stereospecificity of hydride transfer in the flavin mono-oxygenase orcinol hydroxylase.
    Higgins IJ; Ribbons DW
    Biochem J; 1972 Apr; 127(3):65P. PubMed ID: 4342495
    [No Abstract]   [Full Text] [Related]  

  • 6. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudomonas putida.
    Chapman PJ; Ribbons DW
    J Bacteriol; 1976 Mar; 125(3):985-98. PubMed ID: 942589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial metabolism of resorcinylic compounds: purification and properties of orcinol hydroxylase and resorcinol hydroxylase from Pseudomonas putida ORC.
    Ohta Y; Ribbons DW
    Eur J Biochem; 1976 Jan; 61(1):259-69. PubMed ID: 1280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of phenol and cresols by mutants of Pseudomonas putida.
    Bayly RC; Wigmore GJ
    J Bacteriol; 1973 Mar; 113(3):1112-20. PubMed ID: 4347965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans.
    Hareland WA; Crawford RL; Chapman PJ; Dagley S
    J Bacteriol; 1975 Jan; 121(1):272-85. PubMed ID: 234937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymic omega-oxidation: stoichiometry of the omega-oxidation of fatty acids.
    Peterson JA; McKenna EJ; Estabrook DW; Coon MJ
    Arch Biochem Biophys; 1969 Apr; 131(1):245-52. PubMed ID: 4306134
    [No Abstract]   [Full Text] [Related]  

  • 11. The stereochemistry of NADH utilization by the flavoenzyme monooxygenase orcinol hydroxylase.
    Ryerson CC; Walsh C
    J Biol Chem; 1979 Jun; 254(11):4349-51. PubMed ID: 220242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct involvement of hydrogen peroxide in bacterial alpha-hydroxylation of fatty acid.
    Matsunaga I; Yamada M; Kusunose E; Nishiuchi Y; Yano I; Ichihara K
    FEBS Lett; 1996 May; 386(2-3):252-4. PubMed ID: 8647293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida.
    Hopper DJ; Taylor DG
    J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of 4-hydroxymandelic acid in the degradation of mandelic acid by Pseudomonas convexa.
    Bhat SG; Vaidyanathan CS
    J Bacteriol; 1976 Sep; 127(3):1108-18. PubMed ID: 956122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of phenol and cresols by Bacillus stearothermophilus.
    Buswell JA
    J Bacteriol; 1975 Dec; 124(3):1077-83. PubMed ID: 1194230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Hydroxybenzoate 4-hydroxylase from Pseudomonas testosteroni.
    Michalover JL; Ribbons DW; Hughes H
    Biochem Biophys Res Commun; 1973 Dec; 55(3):888-96. PubMed ID: 4148586
    [No Abstract]   [Full Text] [Related]  

  • 17. A mutant of Pseudomonas putida with altered regulation of the enzymes for degradation of phenol and cresols.
    Wigmore GJ; Bayly RC
    Biochem Biophys Res Commun; 1974 Sep; 60(1):48-55. PubMed ID: 4371622
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida.
    Murray K; Williams PA
    J Bacteriol; 1974 Mar; 117(3):1153-7. PubMed ID: 4813893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues.
    Wigmore GJ; Bayly RC; Di Berardino D
    J Bacteriol; 1974 Oct; 120(1):31-7. PubMed ID: 4418942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic isotope effects in the oxidation of isotopically labeled NAD(P)H by bacterial flavoprotein monooxygenases.
    Ryerson CC; Ballou DP; Walsh C
    Biochemistry; 1982 Mar; 21(6):1144-51. PubMed ID: 7074071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.