BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 4324900)

  • 1. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport.
    Pucell A; Martonosi A
    J Biol Chem; 1971 May; 246(10):3389-97. PubMed ID: 4324900
    [No Abstract]   [Full Text] [Related]  

  • 2. Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes.
    Martonosi A; Donley JR; Pucell AG; Halpin RA
    Arch Biochem Biophys; 1971 Jun; 144(2):529-40. PubMed ID: 4328159
    [No Abstract]   [Full Text] [Related]  

  • 3. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport.
    Makinose M
    Eur J Biochem; 1969 Aug; 10(1):74-82. PubMed ID: 4242109
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of ATP and of a bound phosphoryl group acceptor on Ca binding and exchangeability in sarcoplasmic reticulum.
    Carvalho AP; Mota AM
    Arch Biochem Biophys; 1971 Jan; 142(1):201-12. PubMed ID: 4250972
    [No Abstract]   [Full Text] [Related]  

  • 5. Acetyl phosphate as substrate for Ca 2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions.
    De Meis L; Hasselbach W
    J Biol Chem; 1971 Aug; 246(15):4759-63. PubMed ID: 5562357
    [No Abstract]   [Full Text] [Related]  

  • 6. Ca2+ uptake and acetyl phosphatase of skeletal muscle microsomes. Inhibition by Na+, K+, Li+, and adenosine triphosphate.
    De Meis L
    J Biol Chem; 1969 Jul; 244(14):3733-9. PubMed ID: 4308734
    [No Abstract]   [Full Text] [Related]  

  • 7. Substrate regulation of membrane phosphorylation and of Ca 2+ transport in the sarcoplasmic reticulum.
    de Meis L; Fialho de Mello MC
    J Biol Chem; 1973 May; 248(10):3691-701. PubMed ID: 4267300
    [No Abstract]   [Full Text] [Related]  

  • 8. Allosteric inhibiton by alkali ions of the Ca 2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes.
    De Meis L
    J Biol Chem; 1971 Aug; 246(15):4764-73. PubMed ID: 4254540
    [No Abstract]   [Full Text] [Related]  

  • 9. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport.
    Martonosi A
    J Biol Chem; 1969 Feb; 244(4):613-20. PubMed ID: 4238763
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of phospholipid in CA 2+ -stimulated ATPase activity of sarcoplasmic reticulum.
    Meissner G; Fleischer S
    Biochim Biophys Acta; 1972 Jan; 255(1):19-33. PubMed ID: 4258773
    [No Abstract]   [Full Text] [Related]  

  • 11. Adenosine triphosphatase activities of muscle sarcolemma.
    Sulakhe PV; Drummond GI; Ng DC
    J Biol Chem; 1973 Jun; 248(12):4158-62. PubMed ID: 4268121
    [No Abstract]   [Full Text] [Related]  

  • 12. K+-stimulated phosphatase of microsomes from gastric mucosa.
    Forte JG; Forte GM; Saltman P
    J Cell Physiol; 1967 Jun; 69(3):293-304. PubMed ID: 4296514
    [No Abstract]   [Full Text] [Related]  

  • 13. Calcium transport in isolated sarcoplasmic reticulum during muscle maturation.
    Fanburg BL; Drachman DB; Moll D; Roth SI
    Nature; 1968 Jun; 218(5145):962-4. PubMed ID: 4234574
    [No Abstract]   [Full Text] [Related]  

  • 14. Comparative data of Ca2+ transport in brain and skeletal muscle microsomes.
    de Meis L; Rubin-Altschul M; Machado RD
    J Biol Chem; 1970 Apr; 245(8):1883-9. PubMed ID: 4245465
    [No Abstract]   [Full Text] [Related]  

  • 15. [The influence of oxalate on calcium transport of isolated sarcoplasmic reticular vesicles].
    Makinose M; Hasselbach W
    Biochem Z; 1965 Dec; 343(4):360-82. PubMed ID: 5875437
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium binding properties of sarcoplasmic reticulum membranes.
    Cohen A; Selinger Z
    Biochim Biophys Acta; 1969 Jun; 183(1):27-35. PubMed ID: 4307352
    [No Abstract]   [Full Text] [Related]  

  • 17. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. 3. Ca plus-uptake and ATP-splitting.
    Yamada S; Yamamoto T; Tonomura Y
    J Biochem; 1970 Jun; 67(6):789-94. PubMed ID: 4247349
    [No Abstract]   [Full Text] [Related]  

  • 18. Reaction mechanism of the Ca2 plus-dependent ATPase of sarcoplasmic reticulum from skeletal mus le. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate.
    Kanazawa T; Yamada A; Yamamoto T; Tonomura Y
    J Biochem; 1971 Jul; 70(1):95-123. PubMed ID: 4254539
    [No Abstract]   [Full Text] [Related]  

  • 19. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. V. Phosphorylation by adenosine triphosphate-32P.
    Fahn S; Koval GJ; Albers RW
    J Biol Chem; 1968 Apr; 243(8):1993-2002. PubMed ID: 4230834
    [No Abstract]   [Full Text] [Related]  

  • 20. ATP formation from ADP and a phosphorylated intermediate of Ca2+-dependent ATPase in fragmented sarcoplasmic reticulum.
    Kanazawa T; Yamada S; Tonomura Y
    J Biochem; 1970 Oct; 68(4):593-5. PubMed ID: 4249833
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.