These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 4325)

  • 21. [Stabilization of delta mu H+ in Escherichia coli upon K+ and Na+ transmembrane gradient dissipation].
    Brown II; Kim IuV
    Biokhimiia; 1982 Jan; 47(1):137-44. PubMed ID: 7039692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Matrix magnesium and the permeability of heart mitochondria to potassium ion.
    Jung DW; Brierley GP
    J Biol Chem; 1986 May; 261(14):6408-15. PubMed ID: 3084482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei.
    Nolan DP; Voorheis HP
    Eur J Biochem; 2000 Aug; 267(15):4615-23. PubMed ID: 10903493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of intracellular pH and proton-potassium exchange in fermenting Escherichia coli grown anaerobically in alkaline medium.
    Trchounian A; Ohanjayan E; Zakharyan E
    Membr Cell Biol; 1998; 12(1):67-78. PubMed ID: 9829260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The protonmotive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase.
    Marin B; Marin-Lanza M; Komor E
    Biochem J; 1981 Aug; 198(2):365-72. PubMed ID: 6275844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles.
    Bassilana M; Damiano E; Leblanc G
    Biochemistry; 1984 Feb; 23(5):1015-22. PubMed ID: 6324854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The lysosomal proton pump is electrogenic.
    Harikumar P; Reeves JP
    J Biol Chem; 1983 Sep; 258(17):10403-10. PubMed ID: 6224789
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient.
    Carty SE; Johnson RG; Scarpa A
    J Biol Chem; 1981 Nov; 256(21):11244-50. PubMed ID: 6457050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells.
    Kashket ER
    J Bacteriol; 1981 Apr; 146(1):377-84. PubMed ID: 6260744
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Systems of H+ K+ ion exchange in E. coli].
    Martirosov SM; Trchunian AA; Vartanian AG
    Biofizika; 1982; 27(1):48-51. PubMed ID: 7039686
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnitude of the protonmotive force in respiring Staphylococcus aureus and Escherichia coli.
    Collins SH; Hamilton WA
    J Bacteriol; 1976 Jun; 126(3):1224-31. PubMed ID: 7546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles.
    Cohn DE; Kaczorowski GJ; Kaback HR
    Biochemistry; 1981 May; 20(11):3308-13. PubMed ID: 7018574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Internal pH of isolated chromaffin vesicles.
    Johnson RG; Scarpa A
    J Biol Chem; 1976 Apr; 251(7):2189-91. PubMed ID: 5444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Erythromycin and azithromycin transport into Haemophilus influenzae ATCC 19418 under conditions of depressed proton motive force (delta mu H).
    Capobianco JO; Goldman RC
    Antimicrob Agents Chemother; 1990 Sep; 34(9):1787-91. PubMed ID: 2178338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G; Rimon G; Kaback HR
    Biochemistry; 1980 May; 19(11):2522-8. PubMed ID: 6992861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electroneutral H+-K+ exchange in liver mitochondria. Regulation by membrane potential.
    Bernardi P; Azzone GF
    Biochim Biophys Acta; 1983 Aug; 724(2):212-23. PubMed ID: 6309221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz.
    Reed RH; Rowell P; Stewart WD
    Eur J Biochem; 1981 May; 116(2):323-30. PubMed ID: 6788551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D-Gluconate transport in Arthrobacter pyridinolis. Metabolic trapping of a protonated solute.
    Mandel KG; Krulwich TA
    Biochim Biophys Acta; 1979 Apr; 552(3):478-91. PubMed ID: 36144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.