These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 4325600)

  • 1. Sequential chemical modifications of tyrosyl residues in alkaline phosphatase of Escherichia coli.
    Christen P; Vallee BL; Simpson RT
    Biochemistry; 1971 Apr; 10(8):1377-84. PubMed ID: 4325600
    [No Abstract]   [Full Text] [Related]  

  • 2. L-asparaginase from Escherichia coli B. Chemical modifications of tyrosyl residues.
    Shifrin S; Solis BG
    J Biol Chem; 1972 Jul; 247(13):4121-5. PubMed ID: 4556304
    [No Abstract]   [Full Text] [Related]  

  • 3. A mutationally altered alkaline phosphatase from Escherichia coli. II. Structural and catalytic properties of the activated enzyme.
    Halford SE; Lennette DA; Schlesinger MJ
    J Biol Chem; 1972 Apr; 247(7):2095-101. PubMed ID: 4552688
    [No Abstract]   [Full Text] [Related]  

  • 4. Alterations in the structure and function of Escherichia coli alkaline phosphatase due to Zn2+ binding.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Feb; 8(2):588-93. PubMed ID: 4893577
    [No Abstract]   [Full Text] [Related]  

  • 5. Zinc and cobalt alkaline phosphatases.
    Simpson RT; Vallee BL
    Ann N Y Acad Sci; 1969 Oct; 166(2):670-95. PubMed ID: 4907876
    [No Abstract]   [Full Text] [Related]  

  • 6. Negative homotropic interactions in binding of substrate to alkaline phosphatase of Escherichia coli.
    Simpson RT; Valee BL
    Biochemistry; 1970 Feb; 9(4):953-8. PubMed ID: 4906908
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural and activational zinc in Escherichia coli alkaline phosphatase.
    Trotman CN; Greenwood C
    Biochem J; 1971 Jan; 121(1):12P. PubMed ID: 5000593
    [No Abstract]   [Full Text] [Related]  

  • 8. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli.
    Simpson RT; Vallee BL
    Biochemistry; 1968 Dec; 7(12):4343-50. PubMed ID: 4882708
    [No Abstract]   [Full Text] [Related]  

  • 9. Chemical modification of alkaline phosphatases. The effects of several treatments on human placental alkaline phosphatase isoenzymes.
    Thomas DM; Moss DW
    Enzymologia; 1972 Jan; 42(1):65-77. PubMed ID: 5009499
    [No Abstract]   [Full Text] [Related]  

  • 10. Formation and properties of a tetrameric form of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1969 Nov; 8(11):4278-82. PubMed ID: 4900990
    [No Abstract]   [Full Text] [Related]  

  • 11. The reactivity of the tyrosyl residues of cytochrome b 5 .
    Huntley TE; Strittmatter P
    J Biol Chem; 1972 Jul; 247(14):4648-53. PubMed ID: 5043860
    [No Abstract]   [Full Text] [Related]  

  • 12. Polymerization of 5'-desoxyribonucleotides with beta-imidazolyl-4(5)-propanoic acid.
    Pongs O; Ts'o PO
    Biochem Biophys Res Commun; 1969 Aug; 36(3):475-81. PubMed ID: 4309784
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic properties of cobalt alkaline phosphatase.
    Gottesman M; Simpson RT; Vallee BL
    Biochemistry; 1969 Sep; 8(9):3776-83. PubMed ID: 4897950
    [No Abstract]   [Full Text] [Related]  

  • 14. Conformational states of the subunit of Escherichia coli alkaline phosphatase.
    Reynolds JA; Schlesinger MJ
    Biochemistry; 1967 Nov; 6(11):3552-9. PubMed ID: 4864145
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on the properties of chemically modified actin. I. Photooxidation, succinylation, nitration.
    Mühlrad A; Corsi A; Granata AL
    Biochim Biophys Acta; 1968 Oct; 162(3):435-43. PubMed ID: 4234480
    [No Abstract]   [Full Text] [Related]  

  • 16. The Mn2plus-alkaline phosphatase of E. coli.
    Chappelet D; Lazdunski C; Petitclerc C; Lazdunski M
    Biochem Biophys Res Commun; 1970 Jul; 40(1):91-6. PubMed ID: 4318588
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of iodination and acetylation of tyrosyl residues on the activity and structure of arginine kinase from lobster muscle.
    Fattoum A; Kassab R; Pradel LA
    Eur J Biochem; 1971 Oct; 22(3):445-56. PubMed ID: 5132194
    [No Abstract]   [Full Text] [Related]  

  • 18. Implication of tyrosine in iron binding in hemerythrin.
    York JL; Fan CC
    Biochemistry; 1971 Apr; 10(9):1659-65. PubMed ID: 4931749
    [No Abstract]   [Full Text] [Related]  

  • 19. The autoactivation of trypsinogen.
    Kay J; Kassell B
    J Biol Chem; 1971 Nov; 246(21):6661-5. PubMed ID: 5167250
    [No Abstract]   [Full Text] [Related]  

  • 20. The potential of carboxylic-phosphoric mixed anhydrides as specific reagents for enzymic binding sites for alkyl phosphates. Inactivation of an enzyme by an anhydride isosteric with adenosine 5'-phosphate.
    Hampton A; Harper PJ
    Arch Biochem Biophys; 1971 Mar; 143(1):340-1. PubMed ID: 4934882
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.