These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 432641)
1. Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors. Weinstein JN; Magin RL; Yatvin MB; Zaharko DS Science; 1979 Apr; 204(4389):188-91. PubMed ID: 432641 [TBL] [Abstract][Full Text] [Related]
2. Delivery of antitumor drug to bladder cancer by use of phase transition liposomes and hyperthermia. Tacker JR; Anderson RU J Urol; 1982 Jun; 127(6):1211-4. PubMed ID: 7087041 [TBL] [Abstract][Full Text] [Related]
3. Effect of vesicle size on the clearance, distribution, and tumor uptake of temperature-sensitive liposomes. Magin RL; Hunter JM; Niesman MR; Bark GA Cancer Drug Deliv; 1986; 3(4):223-37. PubMed ID: 3567843 [TBL] [Abstract][Full Text] [Related]
4. Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors. Willerding L; Limmer S; Hossann M; Zengerle A; Wachholz K; Ten Hagen TL; Koning GA; Sroka R; Lindner LH; Peller M J Control Release; 2016 Jan; 222():47-55. PubMed ID: 26658073 [TBL] [Abstract][Full Text] [Related]
5. Treatment of solid L1210 murine tumors with local hyperthermia and temperature-sensitive liposomes containing methotrexate. Weinstein JN; Magin RL; Cysyk RL; Zaharko DS Cancer Res; 1980 May; 40(5):1388-95. PubMed ID: 6892792 [No Abstract] [Full Text] [Related]
6. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Kong G; Anyarambhatla G; Petros WP; Braun RD; Colvin OM; Needham D; Dewhirst MW Cancer Res; 2000 Dec; 60(24):6950-7. PubMed ID: 11156395 [TBL] [Abstract][Full Text] [Related]
7. Use of temperature-sensitive liposomes in the selective delivery of methotrexate and cis-platinum analogues to murine bladder tumor. Bassett JB; Anderson RU; Tacker JR J Urol; 1986 Mar; 135(3):612-5. PubMed ID: 3944919 [TBL] [Abstract][Full Text] [Related]
8. Effects of entrapment in liposomes on the distribution, degradation and effectiveness of methotrexate in vivo. Kimelberg HK; Atchison ML Ann N Y Acad Sci; 1978; 308():395-410. PubMed ID: 100041 [No Abstract] [Full Text] [Related]
9. Treatment of murine SCC VII tumors with localized hyperthermia and temperature-sensitive liposomes containing cisplatin. Nishimura Y; Ono K; Hiraoka M; Masunaga S; Jo S; Shibamoto Y; Sasai K; Abe M; Iga K; Ogawa Y Radiat Res; 1990 May; 122(2):161-7. PubMed ID: 2336462 [TBL] [Abstract][Full Text] [Related]
10. Heat-sensitive liposomes containing cisplatin and localized hyperthermia in treatment of murine tumor. Nishita T Osaka City Med J; 1998 Jun; 44(1):73-83. PubMed ID: 9834620 [TBL] [Abstract][Full Text] [Related]
11. MR characterization of mild hyperthermia-induced gadodiamide release from thermosensitive liposomes in solid tumors. Peller M; Schwerdt A; Hossann M; Reinl HM; Wang T; Sourbron S; Ogris M; Lindner LH Invest Radiol; 2008 Dec; 43(12):877-92. PubMed ID: 19002060 [TBL] [Abstract][Full Text] [Related]
12. Targeted delivery of methotrexate to skeletal muscular tissue by thermosensitive magnetoliposomes. Zhu L; Huo Z; Wang L; Tong X; Xiao Y; Ni K Int J Pharm; 2009 Mar; 370(1-2):136-43. PubMed ID: 19114095 [TBL] [Abstract][Full Text] [Related]
13. In depth study on thermosensitive liposomes: Optimizing formulations for tumor specific therapy and in vitro to in vivo relations. Lokerse WJ; Kneepkens EC; ten Hagen TL; Eggermont AM; Grüll H; Koning GA Biomaterials; 2016 Mar; 82():138-50. PubMed ID: 26761778 [TBL] [Abstract][Full Text] [Related]
14. Selective delivery of liposome-associated cis-dichlorodiammineplatinum(II) by heat and its influence on tumor drug uptake and growth. Yatvin MB; Mühlensiepen H; Porschen W; Weinstein JN; Feinendegen LE Cancer Res; 1981 May; 41(5):1602-7. PubMed ID: 7194141 [TBL] [Abstract][Full Text] [Related]
15. Reversal of resistance to methotrexate by hyperthermia in Chinese hamster ovary cells. Herman TS; Cress AE; Sweets C; Gerner EW Cancer Res; 1981 Oct; 41(10):3840-3. PubMed ID: 7284991 [TBL] [Abstract][Full Text] [Related]
16. The effect of entrapment in liposomes on the in vivo distribution of [3H]methotrexate in a primate. Kimelberg HK; Tracy TF; Biddlecome SM; Bourke RS Cancer Res; 1976 Aug; 36(8):2949-57. PubMed ID: 819137 [TBL] [Abstract][Full Text] [Related]
17. Pharmacokinetic interactions of cyclophosphamide and 5-fluorouracil with methotrexate in an animal model. de Bruijn EA; Driessen O; Leeflang P; van den Bosch N; van Strijen E; Slee PH; Hermans J Cancer Treat Rep; 1986 Oct; 70(10):1159-65. PubMed ID: 3756938 [TBL] [Abstract][Full Text] [Related]
18. Role of the cellular oxidation-reduction state in methotrexate binding to dihydrofolate reductase and dissociation induced by reduced folates. Matherly LH; Anderson LA; Goldman ID Cancer Res; 1984 Jun; 44(6):2325-30. PubMed ID: 6609765 [TBL] [Abstract][Full Text] [Related]
19. Liposomes as drug carriers in cancer therapy: hyperthermia and pH sensitivity as modalities for targeting. Yatvin MB; Cree TC; Tegmo-Larsson IM; Gipp JJ Strahlentherapie; 1984 Dec; 160(12):732-40. PubMed ID: 6393456 [No Abstract] [Full Text] [Related]
20. The prolongation of the survival times of mice implanted with TLX5 cells by treatment with methotrexate encapsulated in erythrocytes. Alpar HO; Lewis DA Biochem Pharmacol; 1987 Sep; 36(18):3081-3. PubMed ID: 3632726 [No Abstract] [Full Text] [Related] [Next] [New Search]