These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 4326520)
1. Structural change of pterinosome (pteridine pigment granule) during the Xanthophore differentiation of Oryzias fish. Kamei-Takeuchi I; Hama T J Ultrastruct Res; 1971 Mar; 34(5):452-63. PubMed ID: 4326520 [No Abstract] [Full Text] [Related]
2. Electron microscopic study on the xanthophore differentiation in Xenopus laevis, with special reference to their pterinosomes. Yasutomi M; Hama T J Ultrastruct Res; 1972 Mar; 38(5):421-32. PubMed ID: 4335114 [No Abstract] [Full Text] [Related]
3. Studies on fine structure and cytochemical properties of erythrophores in swordtail, Xiphophorus helleri, with special reference to their pigment granules (Pterinosomes). Matsumoto J J Cell Biol; 1965 Dec; 27(3):493-504. PubMed ID: 5885426 [TBL] [Abstract][Full Text] [Related]
4. Ultramicroscopic study of the developmental change of the xanthophore in the frog, Rana Japonica with special reference to pterinosomes. Yasutomi M; Hama T Dev Growth Differ; 1971 Oct; 13(3):141-9. PubMed ID: 5147852 [No Abstract] [Full Text] [Related]
5. Involvement of pteridines in the body coloration of the isopod Armadillidium vulgare. Negishi S; Hasegawa Y; Katoh S Pigment Cell Res; 1998 Dec; 11(6):368-74. PubMed ID: 9870549 [TBL] [Abstract][Full Text] [Related]
6. The pigmentary system of developing axolotls. I. A biochemical and structural analysis of chromatophores in wild-type axolotls. Frost SK; Epp LG; Robinson SJ J Embryol Exp Morphol; 1984 Jun; 81():105-25. PubMed ID: 6470605 [TBL] [Abstract][Full Text] [Related]
7. Pigment movements in fish melanophores: morphological and physiological studies. Schliwa M; Bereiter-Hahn J Z Zellforsch Mikrosk Anat; 1973 Dec; 147(1):107-25. PubMed ID: 4363097 [No Abstract] [Full Text] [Related]
8. Pteridines in the yellow-colored chromatophores of the isopod, Armadillidium vulgare. Nakagoshi M; Takikawa S; Negishi S; Tsusué M Biol Chem Hoppe Seyler; 1992 Dec; 373(12):1249-54. PubMed ID: 1292511 [TBL] [Abstract][Full Text] [Related]
9. Generation of no-yellow-pigment Xenopus tropicalis by slc2a7 gene knockout. Nakajima K; Shimamura M; Furuno N Dev Dyn; 2021 Oct; 250(10):1420-1431. PubMed ID: 33760303 [TBL] [Abstract][Full Text] [Related]
10. Microspectrophotometric analysis of intact chromatophores of the Japanese medaka, Oryzias latipes. Armstrong TN; Cronin TW; Bradley BP Pigment Cell Res; 2000 Apr; 13(2):116-9. PubMed ID: 10841033 [TBL] [Abstract][Full Text] [Related]
11. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio. Odenthal J; Rossnagel K; Haffter P; Kelsh RN; Vogelsang E; Brand M; van Eeden FJ; Furutani-Seiki M; Granato M; Hammerschmidt M; Heisenberg CP; Jiang YJ; Kane DA; Mullins MC; Nüsslein-Volhard C Development; 1996 Dec; 123():391-8. PubMed ID: 9007257 [TBL] [Abstract][Full Text] [Related]
12. Pigment pattern formation in the quail mutant of the silkworm, Bombyx mori: parallel increase of pteridine biosynthesis and pigmentation of melanin and ommochromes. Kato T; Sawada H; Yamamoto T; Mase K; Nakagoshi M Pigment Cell Res; 2006 Aug; 19(4):337-45. PubMed ID: 16827752 [TBL] [Abstract][Full Text] [Related]
13. Structural changes of drosopterinosomes (red pigment granules) during the erythrophore differentiation of the frog, Rana japonica, with reference to other pigment-containing organelles. Yasutomi M; Hama T Z Zellforsch Mikrosk Anat; 1973 Feb; 137(3):331-43. PubMed ID: 4693771 [No Abstract] [Full Text] [Related]
14. The pigmentary system of developing axolotls. II. An analysis of the melanoid phenotype. Frost SK; Epp LG; Robinson SJ J Embryol Exp Morphol; 1984 Jun; 81():127-42. PubMed ID: 6470606 [TBL] [Abstract][Full Text] [Related]
15. The biochemical effects of the d, m, and a genes on pigment cell differentiation in the axolotl. Benjamin CP Dev Biol; 1970 Sep; 23(1):62-85. PubMed ID: 4991554 [No Abstract] [Full Text] [Related]
16. Analysis of xanthophore and pterinosome biogenesis in zebrafish using methylene blue and pteridine autofluorescence. Le Guyader S; Jesuthasan S Pigment Cell Res; 2002 Feb; 15(1):27-31. PubMed ID: 11837453 [TBL] [Abstract][Full Text] [Related]
17. Electron microscopy of two types of reflecting chromatophores (iridophores and leucophores) in the guppy, Lebistes reticulatus Peters. Takeuchi IK Cell Tissue Res; 1976 Oct; 173(1):17-27. PubMed ID: 991232 [TBL] [Abstract][Full Text] [Related]
18. Morphological and biochemical characterization of goldfish erythrophores and their pterinosomes. Matsumoto J; Obika M J Cell Biol; 1968 Nov; 39(2):233-50. PubMed ID: 5692582 [TBL] [Abstract][Full Text] [Related]
19. [The ultrastructure of the adenohypophysis in the toad, Bufo bufo L. 3. Cell differentiation in the pars distalis during larval growth]. Mira-Moser F Z Zellforsch Mikrosk Anat; 1972; 125(1):88-107. PubMed ID: 4336302 [No Abstract] [Full Text] [Related]
20. Evidence that MAP-2 may be involved in pigment granule transport in squirrel fish erythrophores. Stearns ME; Binder LI Cell Motil Cytoskeleton; 1987; 7(3):221-34. PubMed ID: 3297355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]