These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 4326582)

  • 41. Investigation of the component reactions of oxidative sterol demethylation. Study of the aerobic and anaerobic processes.
    Miller WL; Kalafer ME; Gaylor JL; Delwiche CV
    Biochemistry; 1967 Sep; 6(9):2673-8. PubMed ID: 4383278
    [No Abstract]   [Full Text] [Related]  

  • 42. The synthesis of tritium-labeled 14-alpha-methyl-5-alpha-cholest-7-en-3-beta-ol and its enzymatic demethylation.
    Knight JC; Klein PD; Szczepanik PA
    J Biol Chem; 1966 Apr; 241(7):1502-8. PubMed ID: 5946611
    [No Abstract]   [Full Text] [Related]  

  • 43. The reduction of certain C-nitroso compounds by rat liver cytosol.
    Bernheim ML
    Res Commun Chem Pathol Pharmacol; 1973 Jul; 6(1):151-65. PubMed ID: 4147452
    [No Abstract]   [Full Text] [Related]  

  • 44. The formation of cholest-5-ene-3 ,26-diol as an intermediate in the conversion of cholesterol into bile acids by liver mitochondria.
    Mitropoulos KA; Avery MD; Myant NB; Gibbons GF
    Biochem J; 1972 Nov; 130(2):363-71. PubMed ID: 4664570
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygenation mechanism in the oxidation of xenobiotic aldehyde to carboxylic acid by mouse hepatic microsomes.
    Yamamoto I; Watanabe K; Narimatsu S; Yoshimura H
    Biochem Biophys Res Commun; 1988 Jun; 153(2):779-82. PubMed ID: 2838024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Desmosterol, an intermediate in dealkylation of beta-sitosterol in the tobacco hornworm.
    Svoboda JA; Thompson MJ; Robbins WE
    Life Sci; 1967 Feb; 6(4):395-404. PubMed ID: 6032212
    [No Abstract]   [Full Text] [Related]  

  • 47. Studies on the mechanism of lanosterol 14 alpha-demethylation. A requirement for two distinct types of mixed-function-oxidase systems.
    Gibbons FG; Pullinger CR; Mitropoulos KA
    Biochem J; 1979 Nov; 183(2):309-15. PubMed ID: 534498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Apparent non-specific effect of bile salts on the terminal reactions of cholesterol biosynthesis by rat liver.
    Miller WL; Gaylor JL
    Biochim Biophys Acta; 1967 Apr; 137(2):400-2. PubMed ID: 6058813
    [No Abstract]   [Full Text] [Related]  

  • 49. Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat.
    Harry DS; Dini M; McIntyre N
    Biochim Biophys Acta; 1973 Jan; 296(1):209-20. PubMed ID: 4693507
    [No Abstract]   [Full Text] [Related]  

  • 50. Structural specificity of bile acid for inhibition of sterol synthesis in cell-free extracts of yeast.
    Hatanaka H; Kawaguchi A; Hayakawa S; Katsuki H
    Biochim Biophys Acta; 1972 Jul; 270(3):397-406. PubMed ID: 4557431
    [No Abstract]   [Full Text] [Related]  

  • 51. Studies on the enzymatic synthesis of cholesterol: use of a liver acetone powder.
    Scallen TJ; Schuster MW; Dhar AK; Skrdlant HB
    Lipids; 1971 Mar; 6(3):162-5. PubMed ID: 4396848
    [No Abstract]   [Full Text] [Related]  

  • 52. An epoxide is an intermediate in the microsomal metabolism of the chemical carcinogen, dibenz(a,h)anthracene.
    Selkirk JK; Huberman E; Heidelberger C
    Biochem Biophys Res Commun; 1971 Jun; 43(5):1010-6. PubMed ID: 4398130
    [No Abstract]   [Full Text] [Related]  

  • 53. [Biotransformation and pharmacokinetics of grandiflorenic acid [kauradien-9(11),16-oic acid-18] / 2nd communication (author's transl)].
    Neidlein R; Stumpf U
    Arzneimittelforschung; 1977; 27(6):1162-6. PubMed ID: 578433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Substrate activation in pyridine nucleotide-linked reactions: illustrations from the steroid field.
    Akhtar M; Wilton DC; Watkinson IA; Rahimtula AD
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):167-77. PubMed ID: 4401774
    [No Abstract]   [Full Text] [Related]  

  • 55. Hydrogen exchange and double bond formation in cholesterol biosynthesis.
    Fiecchi A; GAlli Kienle M; Scala A; Galli G; Grossi Paoletti E; Cattabeni F; Paoletti R
    Proc R Soc Lond B Biol Sci; 1972 Feb; 180(1059):147-65. PubMed ID: 4402522
    [No Abstract]   [Full Text] [Related]  

  • 56. [Oxidative demethylation of tetramethylurea by rat (Wistar A.G.) liver microsomes].
    Moisand C; Moisand A; Pitet G
    Ann Pharm Fr; 1972 Nov; 30(11):767-73. PubMed ID: 4666450
    [No Abstract]   [Full Text] [Related]  

  • 57. The fate of the 15-beta hydrogen of lanosterol in cholesterol biosynthesis.
    Canonica L; Fiecchi A; Kienle MG; Scala A; Galli G; Paoletti EG; Paoletti R
    J Am Chem Soc; 1968 Jun; 90(13):3597-8. PubMed ID: 5651570
    [No Abstract]   [Full Text] [Related]  

  • 58. Evidence for the biological conversion of delta 8,14 sterol dienes into cholesterol.
    Canonica L; Fiecchi A; Kienle MG; Scala A; Galli G; Paoletti EG; Paoletti R
    J Am Chem Soc; 1968 Nov; 90(23):6532-4. PubMed ID: 5682454
    [No Abstract]   [Full Text] [Related]  

  • 59. Chemical synthesis of cholesta-5,7,24-trien-3-beta-ol and demonstration of its conversion to cholesterol in the rat.
    Scallen TJ
    Biochem Biophys Res Commun; 1965 Oct; 21(2):149-55. PubMed ID: 5863858
    [No Abstract]   [Full Text] [Related]  

  • 60. Enzymatic conversion of squalene to cholesterol by an acetone powder of rat liver microsomes.
    Scallen TJ; Dean WJ; Schuster MW
    J Biol Chem; 1968 Oct; 243(19):5202-6. PubMed ID: 4386511
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.