These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 432671)
1. Tectorial membrane: a possible effect on frequency analysis in the cochlea. Zwislocki JJ; Kletsky EJ Science; 1979 May; 204(4393):639-41. PubMed ID: 432671 [TBL] [Abstract][Full Text] [Related]
2. Tectorial membrane: a possible sharpening effect on the frequency analysis in the cochlea. Zwislocki JJ Acta Otolaryngol; 1979; 87(3-4):267-9. PubMed ID: 443008 [TBL] [Abstract][Full Text] [Related]
3. What basilar-membrane tuning says about cochlear micromechanics. Zwislocki JJ; Kletsky EJ Am J Otolaryngol; 1982; 3(1):48-52. PubMed ID: 7114390 [TBL] [Abstract][Full Text] [Related]
4. Resonant tectorial membrane motion in the inner ear: its crucial role in frequency tuning. Gummer AW; Hemmert W; Zenner HP Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8727-32. PubMed ID: 8710939 [TBL] [Abstract][Full Text] [Related]
5. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Manley GA; Yates GK; Köppl C Hear Res; 1988 May; 33(2):181-9. PubMed ID: 3397328 [TBL] [Abstract][Full Text] [Related]
6. Mechanical filtering of sound in the inner ear. Brown AM; Gaskill SA; Williams DM Proc Biol Sci; 1992 Oct; 250(1327):29-34. PubMed ID: 1361059 [TBL] [Abstract][Full Text] [Related]
7. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Cormack J; Liu Y; Nam JH; Gracewski SM J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927 [TBL] [Abstract][Full Text] [Related]
8. A micromechanical model of the cochlea with radial movement of the tectorial membrane. Fukazawa T; Ishida K; Murai Y Hear Res; 1999 Nov; 137(1-2):59-67. PubMed ID: 10545634 [TBL] [Abstract][Full Text] [Related]
9. Theory of cochlear mechanics. Zwislocki JJ Hear Res; 1980 Jun; 2(3-4):171-82. PubMed ID: 6997254 [TBL] [Abstract][Full Text] [Related]
11. Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea. Strelioff D; Flock A; Minser KE Hear Res; 1985 May; 18(2):169-75. PubMed ID: 4044418 [TBL] [Abstract][Full Text] [Related]
12. Active control of waves in a cochlear model with subpartitions. Chadwick RS; Dimitriadis EK; Iwasa KH Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2564-9. PubMed ID: 8637914 [TBL] [Abstract][Full Text] [Related]
13. Cochlear micromechanics--a physical model of transduction. Allen JB J Acoust Soc Am; 1980 Dec; 68(6):1660-70. PubMed ID: 7462465 [TBL] [Abstract][Full Text] [Related]
14. Are nonlinearities observed in firing rates of auditory-nerve afferents reflections of a nonlinear coupling between the tectorial membrane and the organ of Corti? Zwislocki JJ Hear Res; 1986; 22():217-21. PubMed ID: 3733541 [TBL] [Abstract][Full Text] [Related]
16. Shearing motion in the hearing organ measured by confocal laser heterodyne interferometry. Ulfendahl M; Khanna SM; Heneghan C Neuroreport; 1995 May; 6(8):1157-60. PubMed ID: 7662897 [TBL] [Abstract][Full Text] [Related]
17. Auditory mechanics of the tectorial membrane and the cochlear spiral. Gavara N; Manoussaki D; Chadwick RS Curr Opin Otolaryngol Head Neck Surg; 2011 Oct; 19(5):382-7. PubMed ID: 21785353 [TBL] [Abstract][Full Text] [Related]
18. The stretching nonlinearity of the basilar membrane in a cochlear model. Borsboom MJ; Viergever MA Hear Res; 1980 Jun; 2(3-4):485-92. PubMed ID: 7410253 [TBL] [Abstract][Full Text] [Related]
19. A model of cochlear micromechanics. Fukazawa T Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997 [TBL] [Abstract][Full Text] [Related]
20. Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea. Lee HY; Raphael PD; Park J; Ellerbee AK; Applegate BE; Oghalai JS Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3128-33. PubMed ID: 25737536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]