These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 4329732)

  • 1. Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strain B 2 5, a rumen spirochete.
    Yokoyama MT; Davis CL
    J Bacteriol; 1971 Aug; 107(2):519-27. PubMed ID: 4329732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential enzymes of linoleic acid oxidation in corn germ: lipoxygenase and linoleate hydroperoxide isomerase.
    Gardner WH
    J Lipid Res; 1970 Jul; 11(4):311-21. PubMed ID: 5459662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogenation of linoleic acid by a rumen spirochete.
    Sachan DS; Davis CL
    J Bacteriol; 1969 Apr; 98(1):300-1. PubMed ID: 5786426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogenation of unsaturated fatty acids. 3. Purification and properties of a linoleate delta-12-cis, delta-11-trans-isomerase from Butyrivibrio fibrisolvens.
    Kepler CR; Tove SB
    J Biol Chem; 1967 Dec; 242(24):5686-92. PubMed ID: 5633396
    [No Abstract]   [Full Text] [Related]  

  • 5. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen.
    van de Vossenberg JL; Joblin KN
    Lett Appl Microbiol; 2003; 37(5):424-8. PubMed ID: 14633116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species.
    Kemp P; White RW; Lander DJ
    J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desaturation and saturation of fatty acids by sheep rumen bacteria: optimal conditions and cofactor requirements.
    Sklan D; Budowski P
    J Dairy Sci; 1974 Jan; 57(1):56-60. PubMed ID: 4149299
    [No Abstract]   [Full Text] [Related]  

  • 8. Stimulation of hydrogenation of linoleate in Treponema (Borrelia) sp, strain B2-5 by reduced methyl viologen and by reduced benzyl viologen.
    Yokoyama MT; Davis CL
    Biochem J; 1971 Dec; 125(3):913-5. PubMed ID: 5169442
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro.
    Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ
    J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady-state rates of linoleic acid biohydrogenation by ruminal bacteria in continuous culture.
    Fellner V; Sauer FD; Kramer JK
    J Dairy Sci; 1995 Aug; 78(8):1815-23. PubMed ID: 8786265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrogenation of the series of methylene-interrupted cis,cis-octadecadienoic acids by pure cultures of six rumen bacteria.
    Kemp P; Lander DJ; Holman RT
    Br J Nutr; 1984 Jul; 52(1):171-7. PubMed ID: 6743637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of a pyridoxal phosphate and coenzyme B 12 dependent D- -ornithine 5,4-aminomutase.
    Somack R; Costilow RN
    Biochemistry; 1973 Jul; 12(14):2597-604. PubMed ID: 4711468
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of pH and concentrations of linoleic and linolenic acids on extent and intermediates of ruminal biohydrogenation in vitro.
    Troegeler-Meynadier A; Nicot MC; Bayourthe C; Moncoulon R; Enjalbert F
    J Dairy Sci; 2003 Dec; 86(12):4054-63. PubMed ID: 14740844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biohydrogenation of alpha-linolenic acid and oleic acid by rumen micro-organisms.
    Wilde PF; Dawson RM
    Biochem J; 1966 Feb; 98(2):469-75. PubMed ID: 4287407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic diversity in biohydrogenation of polyunsaturated fatty acids by lactic acid bacteria involving conjugated fatty acid production.
    Kishino S; Ogawa J; Yokozeki K; Shimizu S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):87-97. PubMed ID: 19319523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high-oil corn or added corn oil on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets.
    Duckett SK; Andrae JG; Owens FN
    J Anim Sci; 2002 Dec; 80(12):3353-60. PubMed ID: 12542177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of α-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms.
    Honkanen AM; Leskinen H; Toivonen V; McKain N; Wallace RJ; Shingfield KJ
    Br J Nutr; 2016 Jun; 115(12):2093-105. PubMed ID: 27087357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid metabolism in the rumen.
    Harfoot CG
    Prog Lipid Res; 1978; 17(1):21-54. PubMed ID: 370840
    [No Abstract]   [Full Text] [Related]  

  • 19. Enzymatic conversion of linoleic acid to 10D-hydroxy-delta 12-cis-octadecenoic acid.
    Schroepfer GJ; Niehaus WG; McCloskey JA
    J Biol Chem; 1970 Aug; 245(15):3798-801. PubMed ID: 5492949
    [No Abstract]   [Full Text] [Related]  

  • 20. [Biosynthesis of 6-methylsalicylic acid].
    Dimroth P; Walter H; Lynen F
    Eur J Biochem; 1970 Mar; 13(1):98-110. PubMed ID: 4392442
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.