These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 4329777)

  • 1. Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes.
    Nicholson C; Llinas R
    J Neurophysiol; 1971 Jul; 34(4):509-31. PubMed ID: 4329777
    [No Abstract]   [Full Text] [Related]  

  • 2. Field potentials generated by dendritic spikes and synaptic potentials.
    Zucker RS
    Science; 1969 Jul; 165(3891):409-13. PubMed ID: 5815257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferred centripetal conduction of dendritic spikes in alligator Purkinje cells.
    Llinás R; Nicholson C; Precht W
    Science; 1969 Jan; 163(3863):184-7. PubMed ID: 4303022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic spikes and their inhibition in alligator Purkinje cells.
    Llinás R; Nicholson C; Freeman JA; Hillman DE
    Science; 1968 Jun; 160(3832):1132-5. PubMed ID: 5647436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity.
    Sawtell NB; Williams A; Bell CC
    J Neurosci; 2007 Feb; 27(7):1552-65. PubMed ID: 17301164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid compartmental model for the alligator Purkinje cell. I: Preferred somatopetal conduction of dendritic spikes and soma-axon interaction.
    Pottala EW; Mortimer JA
    J Neurosci Res; 1975; 1(3-4):207-25. PubMed ID: 1225987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal interactions in frog cerebellum.
    Bloedel JR; Llinas R
    J Neurophysiol; 1969 Nov; 32(6):871-80. PubMed ID: 4310506
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of active versus passive dendritic membranes on the transfer properties of a simulated neuron.
    Levine DS; Woody CD
    Biol Cybern; 1978 Nov; 31(2):63-70. PubMed ID: 216421
    [No Abstract]   [Full Text] [Related]  

  • 9. The cerebellum as a computer: patterns in space and time.
    Eccles JC
    J Physiol; 1973 Feb; 229(1):1-32. PubMed ID: 4347742
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons.
    Callaway JC; Ross WN
    J Neurophysiol; 1997 Jan; 77(1):145-52. PubMed ID: 9120555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniature synaptic potentials recorded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices.
    Okamoto K; Kimura H; Sakai Y
    Brain Res; 1984 Oct; 311(2):281-7. PubMed ID: 6498486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output.
    Bekkers JM; Häusser M
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11447-52. PubMed ID: 17592119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological properties of dendrites and somata in alligator Purkinje cells.
    Llinas R; Nicholson C
    J Neurophysiol; 1971 Jul; 34(4):532-51. PubMed ID: 4329778
    [No Abstract]   [Full Text] [Related]  

  • 14. Electroresponsive properties of dendrites in central neurons.
    Llinás R
    Adv Neurol; 1975; 12():1-13. PubMed ID: 168752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of dendrites of single Purkinje cells and its relationship to so-called inactivation response in rabbit cerebellum.
    Fujita Y
    J Neurophysiol; 1968 Mar; 31(2):131-41. PubMed ID: 5687379
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns.
    Schilling K; Dickinson MH; Connor JA; Morgan JI
    Neuron; 1991 Dec; 7(6):891-902. PubMed ID: 1684902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electro-dynamics of the dendritic space in Purkinje cells of the cerebellum.
    Kulagina IB; Korogod SM; Horcholle-Bossavitt G; Batini C; Tyc-Dumont S
    Arch Ital Biol; 2007 Nov; 145(3-4):211-33. PubMed ID: 18075117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model.
    De Schutter E
    J Neurophysiol; 1998 Aug; 80(2):504-19. PubMed ID: 9705446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential pre- and postsynaptic mechanisms for synaptic potentiation and depression between a granule cell and a Purkinje cell in rat cerebellar culture.
    Hirano T
    Synapse; 1991 Apr; 7(4):321-3. PubMed ID: 1645891
    [No Abstract]   [Full Text] [Related]  

  • 20. Calcium transients in cerebellar Purkinje neurons evoked by intracellular stimulation.
    Lev-Ram V; Miyakawa H; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1167-77. PubMed ID: 1432076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.