These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 4330156)

  • 21. [Halidor, 1-benzyl-1-(3'-dimethylaminopropoxy)-cyclohep tane fumarate as an uncoupler and inhibitor of the respiratory chain].
    Belous AM; Lemeshko VV; Iasaĭtis AA
    Biokhimiia; 1976 May; 41(5):881-5. PubMed ID: 192335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of N,N'-dicyclohexylcarbodiimide and other carbodiimides on electron transfer catalyzed by submitochondrial particles.
    Beyer RE; Brink TW; Crankshaw DL; Kuner JM; Pasternak A
    Biochemistry; 1972 Mar; 11(6):961-9. PubMed ID: 4335291
    [No Abstract]   [Full Text] [Related]  

  • 23. The effect of succinate, malonate and fumarate on the phosphorylating system of the submitochondrial particles.
    Kupriyanov VV; Saks VA
    FEBS Lett; 1972 Jul; 24(1):131-3. PubMed ID: 4263927
    [No Abstract]   [Full Text] [Related]  

  • 24. [The effect of oxidazable substrates and ATP on the sensitivity of certain energy-dependent functions submitochondrial particles to phospholipases A, C and D].
    Kupriianov VV; Luzikov VN
    Biokhimiia; 1975; 40(4):869-74. PubMed ID: 1116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 23. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase.
    Arion WJ; Racker E
    J Biol Chem; 1970 Oct; 245(20):5186-94. PubMed ID: 4319234
    [No Abstract]   [Full Text] [Related]  

  • 26. Energy-linked ion translocation in submitochondrial particles. I. Ca++ accumulation in submitochondrial particles.
    Loyter A; Christiansen RO; Steensland H; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4422-7. PubMed ID: 4308860
    [No Abstract]   [Full Text] [Related]  

  • 27. Interaction of ethidium with the mitochondrial membrane: cooperative binding and energy-linked changes.
    Azzi A; Santato M
    Biochem Biophys Res Commun; 1971 Jul; 44(1):211-7. PubMed ID: 5116512
    [No Abstract]   [Full Text] [Related]  

  • 28. Reduction of mitochondrial components by durohydroquinone.
    Boveris A; Oshino R; Erecińska M; Chance B
    Biochim Biophys Acta; 1971 Aug; 245(1):1-16. PubMed ID: 5132471
    [No Abstract]   [Full Text] [Related]  

  • 29. The membrane structure studied with cationic dyes. 2. Aggregation, metachromatic effects and pK a shifts.
    Dell'Antone P; Colonna R; Azzone GF
    Eur J Biochem; 1972 Jan; 24(3):566-76. PubMed ID: 5058600
    [No Abstract]   [Full Text] [Related]  

  • 30. Stimulation by arsenate of ATP-driven energy-linked reduction of NAD + by succinate.
    Huang CH; Mitchell RA
    Biochem Biophys Res Commun; 1971 Sep; 44(5):1102-8. PubMed ID: 4334272
    [No Abstract]   [Full Text] [Related]  

  • 31. A novel property of mitochondrial oxidative phosphorylation.
    Wilson DF; Fairs K
    Biochem Biophys Res Commun; 1974 Feb; 56(3):635-40. PubMed ID: 4363746
    [No Abstract]   [Full Text] [Related]  

  • 32. Binding of aurovertin to phosphorylating submitochondrial particles.
    van de Stadt RJ; van Dam K
    Biochim Biophys Acta; 1974 May; 347(2):253-63. PubMed ID: 4407158
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of ATP on the EPR spectrum at 20 degrees K of phosphorylating sub-mitochondrial particles.
    Albracht SP; Slater EC
    Biochim Biophys Acta; 1971 Sep; 245(2):508-11. PubMed ID: 4334352
    [No Abstract]   [Full Text] [Related]  

  • 34. Energy linked NAD reduction in phophorylating submitochondrial particles from heavy layer beef heart mitochondria. A lag phenomenon and its localization.
    Schuurmans Stekhoven FM; Sani BP; Sanadi DR
    Biochem Biophys Res Commun; 1970; 39(6):1026-30. PubMed ID: 4327299
    [No Abstract]   [Full Text] [Related]  

  • 35. Ion transport by heart mitochondria. The effects of Cu 2+ on membrane permeability.
    Hwang KM; Scott KM; Brierley GP
    Arch Biochem Biophys; 1972 Jun; 150(2):746-56. PubMed ID: 4261416
    [No Abstract]   [Full Text] [Related]  

  • 36. Energy conservation in detergent-treated mitochondria and purified succinate-cytochrome c reductase.
    Wilson DF; Koppelman M; Erecinska M; Dutton PL
    Biochem Biophys Res Commun; 1971 Aug; 44(4):759-66. PubMed ID: 5125224
    [No Abstract]   [Full Text] [Related]  

  • 37. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA
    Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700
    [No Abstract]   [Full Text] [Related]  

  • 38. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation.
    Christiansen RO; Steensland H; Loyter A; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4428-36. PubMed ID: 4185156
    [No Abstract]   [Full Text] [Related]  

  • 39. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations.
    Brierley GP; Jurkowitz M; Scott KM; Merola AJ
    Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102
    [No Abstract]   [Full Text] [Related]  

  • 40. Free--SH variations during ATP synthesis by oxidative phosphorylation in heart muscle mitochondria.
    Sabadie-Pialoux N; Gautheron D
    Biochim Biophys Acta; 1971 Apr; 234(1):9-15. PubMed ID: 5560366
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.