These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 4330532)
41. Lipolytic activity of ACTH and its fragments on isolated fat cells of the rat: inhibition by different types of antisera. Benuzzi-Badoni M; Felber JP Acta Endocrinol (Copenh); 1969 Sep; 62(1):56-66. PubMed ID: 4309526 [No Abstract] [Full Text] [Related]
42. The interaction of N-ethylmaleimide and ACTH on isolated fat cells. George JM; Palmer JM; McCoy AR Biochim Biophys Acta; 1968 Nov; 170(1):213-6. PubMed ID: 4301823 [No Abstract] [Full Text] [Related]
43. Antilipolytic acition of valinomycin and nonactin in isolated adipose cells through inhibition of adenyl cyclase. Kuo JF; Dill IK Biochem Biophys Res Commun; 1968 Jul; 32(2):333-7. PubMed ID: 4299651 [No Abstract] [Full Text] [Related]
44. Effect of vitamin B6 deficiency on the metabolism of isolated fat cells: response to insulin, epinephrine and theophylline. Sabo DJ; Gershoff SN Proc Soc Exp Biol Med; 1971 Feb; 136(2):542-6. PubMed ID: 5544491 [No Abstract] [Full Text] [Related]
45. The in vivo binding of mercury to soluble proteins of the rat kidney. Ellis RW; Fang SC Toxicol Appl Pharmacol; 1971 Sep; 20(1):14-21. PubMed ID: 5110822 [No Abstract] [Full Text] [Related]
47. An enzymically catalysed reaction between D-glucose and the protein cyst coat of the ciliate Colpoda steinii. Tibbs J; Marshall BJ Biochem J; 1970 Nov; 120(2):245-53. PubMed ID: 4321892 [TBL] [Abstract][Full Text] [Related]
49. The endocrine disruptive effects of mercury. Zhu X; Kusaka Y; Sato K; Zhang Q Environ Health Prev Med; 2000 Jan; 4(4):174-83. PubMed ID: 21432482 [TBL] [Abstract][Full Text] [Related]
50. The influence of nutrition on methyl mercury intoxication. Chapman L; Chan HM Environ Health Perspect; 2000 Mar; 108 Suppl 1(Suppl 1):29-56. PubMed ID: 10698722 [TBL] [Abstract][Full Text] [Related]
51. Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Czech MP; Lawrence JC; Lynn WS Proc Natl Acad Sci U S A; 1974 Oct; 71(10):4173-7. PubMed ID: 4372610 [TBL] [Abstract][Full Text] [Related]
52. Membrane SH-groups related to adrenaline action in rat adipocytes: a comparative study using sulfhydryl reagents of different molecular size. Kather H; Geiger M; Simon B Naunyn Schmiedebergs Arch Pharmacol; 1976; 292(2):177-82. PubMed ID: 940596 [TBL] [Abstract][Full Text] [Related]
53. Independence of the effects of epinephrine, glucagon, and adrenocorticotropin on glucose utilization from those on lipolysis in isolated rat adipose cells. Blecher M; Merlino NS; Ro'Ane JT; Flynn PD J Biol Chem; 1969 Jul; 244(13):3423-9. PubMed ID: 4307449 [No Abstract] [Full Text] [Related]
55. Effect of mercury on response of isolated fat cells to insulin and lipolytic hormones. George JM Endocrinology; 1971 Dec; 89(6):1489-98. PubMed ID: 4330532 [No Abstract] [Full Text] [Related]
56. [The effect of nicotinic acid and propranolol on the lipolytic action of catecholamines and peptide hormones in vitro]. Schwandt P; Hartmann T; Karl HJ Z Gesamte Exp Med Einschl Exp Chir; 1967; 143(1):79-84. PubMed ID: 4297519 [No Abstract] [Full Text] [Related]
57. Metabolism of isolated fat cells. VI. The effects of insulin, lipolytic hormones, and theophylline on glucose transport and metabolism in "ghosts". Rodbell M J Biol Chem; 1967 Dec; 242(24):5751-6. PubMed ID: 4319671 [No Abstract] [Full Text] [Related]