BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 4330767)

  • 1. Metabolism of 25-hydroxycholecalciferol and its inhibition by actinomycin D and cycloheximide.
    Gray RW; DeLuca HF
    Arch Biochem Biophys; 1971 Jul; 145(1):276-82. PubMed ID: 4330767
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on calciferol metabolism. VII. The effects of actinomycin D and cycloheximide on the metabolism, tissue and subcellular localization, and action of vitamin D3.
    Tsai HC; Midgett RJ; Norman AW
    Arch Biochem Biophys; 1973 Aug; 157(2):339-47. PubMed ID: 4354317
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on calciferol metabolism. IV. Subcellular localization of 1,25-dihydroxy-vitamin D 3 in intestinal mucosa and correlation with increased calcium transport.
    Tsai HC; Wong RG; Norman AW
    J Biol Chem; 1972 Sep; 247(17):5511-9. PubMed ID: 4341345
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolism and subcellular location of 25-hydroxycholecalciferol in intestinal mucosa.
    Cousins RJ; DeLuca HF; Chen T; Suda T; Tanaka Y
    Biochemistry; 1970 Mar; 9(6):1453-9. PubMed ID: 4313884
    [No Abstract]   [Full Text] [Related]  

  • 5. 25-Hydroxycholecalciferol, the probable metabolically active form of vitamin D. Isolation, identification, and subcellular location.
    DeLuca HF
    Am J Clin Nutr; 1969 Apr; 22(4):412-24. PubMed ID: 4305084
    [No Abstract]   [Full Text] [Related]  

  • 6. Metaboism of 25-hydroxycholecalciferol in target and nontarget tissues.
    Cousins RJ; DeLuca HF; Gray RW
    Biochemistry; 1970 Sep; 9(19):3649-52. PubMed ID: 4323609
    [No Abstract]   [Full Text] [Related]  

  • 7. Basic studies on the mechanism of action of vitamin D.
    Norman AW; Haussler MR; Adams TH; Myrtle JF; Roberts P; Hibberd KA
    Am J Clin Nutr; 1969 Apr; 22(4):396-411. PubMed ID: 4305083
    [No Abstract]   [Full Text] [Related]  

  • 8. Inhibition of the metabolism of 25-hydroxycholecalciferol by actinomycin D and cycloheximide.
    Tanaka Y; DeLuca HF
    Proc Natl Acad Sci U S A; 1971 Mar; 68(3):605-8. PubMed ID: 4322523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular location of vitamin D and its metabolites in intestinal mucosa after a 10-IU dose.
    Stohs SJ; DeLuca HF
    Biochemistry; 1967 Nov; 6(11):3338-49. PubMed ID: 6073024
    [No Abstract]   [Full Text] [Related]  

  • 10. Dependence of 25-hydroxycholecalciferol-1-hydroxylase regulation on RNA and protein synthesis.
    Tanaka Y; Chen TC; Deluca HF
    Arch Biochem Biophys; 1972 Sep; 152(1):291-8. PubMed ID: 5072703
    [No Abstract]   [Full Text] [Related]  

  • 11. The induction of calcium binding protein biosynthesis in intestine by vitamin D3.
    Macgregor RR; Hamilton JW; Cohn DV
    Biochim Biophys Acta; 1970 Nov; 222(2):482-90. PubMed ID: 4321549
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolism of vitamin D. A new cholecalciferol metabolite, involving loss of hydrogen at C-1, in chick intestinal nuclei.
    Lawson DE; Wilson PW; Kodicek E
    Biochem J; 1969 Nov; 115(2):269-77. PubMed ID: 4314119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New vitamin D metabolite localized in intestinal cell nuclei.
    Lawson DE; Wilson PW; Kodicek E
    Nature; 1969 Apr; 222(5189):171-2. PubMed ID: 4304926
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolism of 25-hydroxycholecalciferol in nephrectomized rats.
    Schaefer K; von Herrath D; Koch HU; Opitz A; Stratz R
    Klin Wochenschr; 1971 Jun; 49(12):708-10. PubMed ID: 4325999
    [No Abstract]   [Full Text] [Related]  

  • 15. Synthesis of (1,2- 3 H 2 )cholecalciferol and metabolism of (4- 14 C,1,2- 3 H 2 )- and (4- 14 C,1- 3 H)-cholecalciferol in rachitic rats and chicks.
    Lawson DE; Pelc B; Bell PA; Wilson PW; Kodicek E
    Biochem J; 1971 Feb; 121(4):673-82. PubMed ID: 4329870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The association of a metabolite of vitamin D3 with intestinal mucosa chromatin in vivo.
    Haussler MR; Myrtle JF; Norman AW
    J Biol Chem; 1968 Aug; 243(15):4055-64. PubMed ID: 5666948
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the mechanism of action of calciferol. 3. Vitamin D-mediated increase of intestinal brush order alkaline phosphatase activity.
    Norman AW; Mircheff AK; Adams TH; Spielvogel A
    Biochim Biophys Acta; 1970 Aug; 215(2):348-59. PubMed ID: 4251207
    [No Abstract]   [Full Text] [Related]  

  • 18. Relationship of duodenal calcium-binding protein to calcium absorption in the laying fowl.
    Bar A; Hurwitz S
    Comp Biochem Physiol B; 1972 Apr; 41(4):735-44. PubMed ID: 4338067
    [No Abstract]   [Full Text] [Related]  

  • 19. Receptors of 1,25-dikydroxycholecalciferol in rat intestine.
    Chen TC; DeLuca HF
    J Biol Chem; 1973 Jul; 248(14):4890-5. PubMed ID: 4717530
    [No Abstract]   [Full Text] [Related]  

  • 20. Mechanism of action of 1,25-dihydroxycholecalciferol on intestinal calcium transport.
    Tanaka Y; DeLuca HF; Omdahl J; Holick MF
    Proc Natl Acad Sci U S A; 1971 Jun; 68(6):1286-8. PubMed ID: 4331086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.