These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 4331031)

  • 21. Studies on the roles of the catalytic and allosteric sites in modulating the reactivity of tryptophan oxygenase with heme ligands. I. Cyanide derivatives.
    Koike K; Feigelson P
    Biochemistry; 1971 Aug; 10(18):3378-84. PubMed ID: 4330263
    [No Abstract]   [Full Text] [Related]  

  • 22. Soluble cytochrome b 5 from human erythrocytes.
    Passon PG; Reed DW; Hultquist DE
    Biochim Biophys Acta; 1972 Jul; 275(1):51-61. PubMed ID: 4340269
    [No Abstract]   [Full Text] [Related]  

  • 23. Isolation and properties of rubredoxin from the photosynthetic green sulfur bacteria.
    Meyer TE; Sharp JJ; Bartsch RG
    Biochim Biophys Acta; 1971 May; 234(2):266-9. PubMed ID: 4327795
    [No Abstract]   [Full Text] [Related]  

  • 24. The mechanism of inhibition of tryptophan 2,3-dioxygenase by aquayamycin.
    Nozaki M; Okuno S; Fujisawa H
    Biochem Biophys Res Commun; 1971 Sep; 44(5):1109-16. PubMed ID: 5160401
    [No Abstract]   [Full Text] [Related]  

  • 25. Metabolic control of cytochrome P-450 cam.
    Peterson JA; Mock DM
    Adv Exp Med Biol; 1975; 58(00):311-24. PubMed ID: 808109
    [No Abstract]   [Full Text] [Related]  

  • 26. The properties of parsley ferredoxin and its selenium-containing homolog.
    Fee JA; Palmer G
    Biochim Biophys Acta; 1971 Aug; 245(1):175-95. PubMed ID: 4332097
    [No Abstract]   [Full Text] [Related]  

  • 27. Selenium as an acid labile sulfur replacement in putidaredoxin.
    Tsibris JC; Namtvedt MJ; Gunsalus IC
    Biochem Biophys Res Commun; 1968 Feb; 30(3):323-7. PubMed ID: 4296680
    [No Abstract]   [Full Text] [Related]  

  • 28. Studies on the catalytic and allosteric sites in modulating the reactivity of tryptophan oxygenase with heme ligands. II. Carbon monoxide derivatives.
    Koike K; Feigelson P
    Biochemistry; 1971 Aug; 10(18):3385-90. PubMed ID: 5118621
    [No Abstract]   [Full Text] [Related]  

  • 29. Enzymatic omega-oxidation. IV. Purification and properties of the omega-hydroxylase of Pseudomonas oleovorans.
    McKenna EJ; Coon MJ
    J Biol Chem; 1970 Aug; 245(15):3882-9. PubMed ID: 4395379
    [No Abstract]   [Full Text] [Related]  

  • 30. Studies on adrenal steroid hydroxylases. Reactivity of iron atoms in adrenal iron-sulfur protein (adrenodoxin) with iron-chelating agents.
    Kimura T; Nakamura S
    Biochemistry; 1971 Nov; 10(24):4517-22. PubMed ID: 4401127
    [No Abstract]   [Full Text] [Related]  

  • 31. Modification of cytochrome c with N-methyl-N'-nitro-N-nitrosoguanidine.
    Nagao M; Hosoi H; Sugimura T
    Biochim Biophys Acta; 1971 May; 237(2):369-77. PubMed ID: 4328398
    [No Abstract]   [Full Text] [Related]  

  • 32. Low temperature EPR spectroscopic characterization of the interaction of cytochrome P-450cam with a spin label analog of metyrapone.
    Mock DM; Bruno GV; Griffin BW; Peterson JA
    J Biol Chem; 1982 May; 257(10):5372-9. PubMed ID: 6279597
    [No Abstract]   [Full Text] [Related]  

  • 33. Heterogeneity of cytochrome P-450 in rat liver microsomes: selective interaction of metyrapone and SKF 525-A with different fractions of microsomal cytochrome P-450.
    Grasdalen H; Bäckström D; Eriksson LE; Ehrenberg A
    FEBS Lett; 1975 Dec; 60(2):294-9. PubMed ID: 179870
    [No Abstract]   [Full Text] [Related]  

  • 34. Structural properties of hydrogenase from Clostridium pasteurianum W5.
    Nakos G; Mortenson LE
    Biochemistry; 1971 Jun; 10(13):2442-9. PubMed ID: 4326766
    [No Abstract]   [Full Text] [Related]  

  • 35. Evidence for the involvement of non-heme iron in the active site of hydrogenase from Desulfovibrio vulgaris.
    Legall J; DerVartanian DV; Spilker E; Lee JP; Peck HD
    Biochim Biophys Acta; 1971 Jun; 234(3):526-30. PubMed ID: 4330154
    [No Abstract]   [Full Text] [Related]  

  • 36. Ionization dependence of camphor binding and spin conversion of the complex between cytochrome P-450 and camphor. Kinetic and static studies at sub-zero temperatures.
    Lange R; Hui Bon Hoa G; Debey P; Gunsalus IC
    Eur J Biochem; 1977 Aug; 77(3):479-85. PubMed ID: 19254
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite.
    Lambeth DO; Palmer G
    J Biol Chem; 1973 Sep; 248(17):6095-103. PubMed ID: 4353631
    [No Abstract]   [Full Text] [Related]  

  • 38. Single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin.
    Brewer CB; Peterson JA
    J Biol Chem; 1988 Jan; 263(2):791-8. PubMed ID: 2826462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interpretation of the EPR and Mössbauer spectra of two-iron, one-electron, iron-sulphur proteins.
    Johnson CE; Cammack R; Rao KK; Hall DO
    Biochem Biophys Res Commun; 1971 May; 43(3):564-71. PubMed ID: 4327444
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbon monoxide binding by Pseudomonas putida cytochrome P-450.
    Peterson JA; Griffin BW
    Arch Biochem Biophys; 1972 Aug; 151(2):427-33. PubMed ID: 5045928
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.