These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 4331272)

  • 1. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP.
    Luzikov VN; Saks VA; Kupriyanov VV
    Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphate acceptor specificity during oxidative phosphorylation in submitochondrial particles.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):179-90. PubMed ID: 4335833
    [No Abstract]   [Full Text] [Related]  

  • 3. NAD + -induced phosphate acceptor specificity in submitochondrial systems.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):191-8. PubMed ID: 4335834
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of succinate, malonate and fumarate on the phosphorylating system of the submitochondrial particles.
    Kupriyanov VV; Saks VA
    FEBS Lett; 1972 Jul; 24(1):131-3. PubMed ID: 4263927
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 6. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action.
    Mitchell RA; Chang BF; Huang CH; DeMaster EG
    Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397
    [No Abstract]   [Full Text] [Related]  

  • 7. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation.
    Christiansen RO; Steensland H; Loyter A; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4428-36. PubMed ID: 4185156
    [No Abstract]   [Full Text] [Related]  

  • 8. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 23. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase.
    Arion WJ; Racker E
    J Biol Chem; 1970 Oct; 245(20):5186-94. PubMed ID: 4319234
    [No Abstract]   [Full Text] [Related]  

  • 9. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXI. Resolution of submitochondrial particles from bovine heart mitochondria with silicotungstate.
    Racker E; Horstman LL; Kling D; Fessenden-Raden JM
    J Biol Chem; 1969 Dec; 244(24):6668-74. PubMed ID: 4311918
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of organic solutes on the reactions of oxidative phosphorylation.
    Conover TE
    J Biol Chem; 1969 Jan; 244(2):254-9. PubMed ID: 4304300
    [No Abstract]   [Full Text] [Related]  

  • 11. Removal of "tightly bound" nucleotides from phosphorylating submitochondrial particles.
    Leimgruber RM; Senior AE
    J Biol Chem; 1976 Nov; 251(22):7110-3. PubMed ID: 136446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and properties of a new coupling factor required for oxidative phosphorylation in silicotungstate-treated submitochondrial particles.
    Fessenden-Raden JM
    J Biol Chem; 1972 Apr; 247(8):2351-7. PubMed ID: 4336371
    [No Abstract]   [Full Text] [Related]  

  • 13. [Control exercized by adrenalin on turnover time of ATP and ADP at the level of glycolysis and oxidative phosphorylations in muscle].
    Morelis R; Gautheron D
    Bull Soc Chim Biol (Paris); 1968; 50(12):2503-20. PubMed ID: 4306333
    [No Abstract]   [Full Text] [Related]  

  • 14. Preservation of energy coupling in submitochondrial particles during extraction and reinsertion of cytochrome C.
    Arion WJ; Wright BJ
    Biochem Biophys Res Commun; 1970 Aug; 40(3):594-9. PubMed ID: 4321657
    [No Abstract]   [Full Text] [Related]  

  • 15. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles.
    Taggart WV; Sanadi DR
    Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058
    [No Abstract]   [Full Text] [Related]  

  • 16. Differential effects of adenylyl imidodiphosphate on adenosine triphosphate synthesis and the partial reactions of oxidative phosphorylation.
    Penefsky HS
    J Biol Chem; 1974 Jun; 249(11):3579-85. PubMed ID: 4364660
    [No Abstract]   [Full Text] [Related]  

  • 17. The affinity of mitochondrial oxidative phosphorylation mechanisms for phosphate and adenosine diphosphate.
    Bygrave FL; Lehninger AL
    Proc Natl Acad Sci U S A; 1967 May; 57(5):1409-15. PubMed ID: 4227016
    [No Abstract]   [Full Text] [Related]  

  • 18. Inorganic orthophosphate activation and adenosine diphosphate as the primary phosphoryl acceptor in oxidative phosphorylation.
    Hill RD; Boyer PD
    J Biol Chem; 1967 Oct; 242(19):4320-3. PubMed ID: 6070842
    [No Abstract]   [Full Text] [Related]  

  • 19. Arsenate and phosphate as modifiers of adenosine triphosphate driven energy-linked reduction. Kinetic study of the effects of modifiers on inhibition by adenosine diphosphate.
    Huang CH; Mitchell RA
    Biochemistry; 1972 Jun; 11(12):2278-83. PubMed ID: 4337612
    [No Abstract]   [Full Text] [Related]  

  • 20. The properties of dicyclohexylcarbodiimide as an inhibitor of oxidative phosphorylation.
    Beechey RB; Roberton AM; Holloway CT; Knight IG
    Biochemistry; 1967 Dec; 6(12):3867-79. PubMed ID: 4294775
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.