These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 4332245)

  • 1. Folding of staphylococcal nuclease: magnetic resonance and fluorescence studies of individual residues.
    Epstein HF; Schechter AN; Cohen JS
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2042-6. PubMed ID: 4332245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton magnetic resonance studies at 220 MHz of the histidine residues of staphylococcal nuclease.
    Cohen JS; Shrager RI; McNeel M; Schechter AN
    Nature; 1970 Nov; 228(5272):642-4. PubMed ID: 5474936
    [No Abstract]   [Full Text] [Related]  

  • 3. Proton magnetic resonance titration curves of the three histidine residues of staphylococcal protease.
    Markley JL; Finkenstadt WR; Dugas H; Leduc P; Drapeau GR
    Biochemistry; 1975 Mar; 14(5):998-1005. PubMed ID: 235949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tentative sequential model for the unfolding and refolding of staphylococcal nuclease at high pH.
    Jardetzky O; Thielmann H; Arata Y; Markley JL; Williams MN
    Cold Spring Harb Symp Quant Biol; 1972; 36():257-61. PubMed ID: 4343718
    [No Abstract]   [Full Text] [Related]  

  • 5. NMR relaxation studies of the unfolding and refolding of staphylococcal nuclease at low pH.
    Arata Y; Khalifah R; Jardetzky O
    Ann N Y Acad Sci; 1973 Dec; 222():230-9. PubMed ID: 4361856
    [No Abstract]   [Full Text] [Related]  

  • 6. Proton-nuclear-magnetic-resonance study of the conformation of neurotoxin II from Middle-Asian cobra (Naja naja oxiana) venom.
    Arseniev AS; Balashova TA; Utkin YN; Tsetlin VI; Bystrov VF; Ivanov VT; Ovchinnikov YA
    Eur J Biochem; 1976 Dec; 71(2):595-606. PubMed ID: 12972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance study of the thermal denaturation of ribonuclease A: implications for multistate behavior at low pH.
    Westmoreland DG; Matthews CR
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):914-8. PubMed ID: 4515001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A.
    Markley JL
    Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental approach to the study of the folding of staphylococcal nuclease.
    Taniuchi H; Anfinsen CB
    J Biol Chem; 1969 Jul; 244(14):3864-75. PubMed ID: 4308739
    [No Abstract]   [Full Text] [Related]  

  • 11. 1H nuclear-magnetic-resonance studies of porcine lutropin and its alpha and beta subunits.
    Maghuin-Rogister G; Degelaen J; Roberts GC
    Eur J Biochem; 1979 May; 96(1):59-68. PubMed ID: 37081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR assignments of the four histidines of staphylococcal nuclease in native and denatured states.
    Alexandrescu AT; Mills DA; Ulrich EL; Chinami M; Markley JL
    Biochemistry; 1988 Mar; 27(6):2158-65. PubMed ID: 3288282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification by n.m.r. spectroscopy of a stable intermediate structure in the unfolding of staphylococcal beta-lactamase.
    Thomas RM; Feeney J; Nicholson RB; Pain RH; Roberts GC
    Biochem J; 1983 Dec; 215(3):525-9. PubMed ID: 6607049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of the unfolding and spectroscopic properties of the V66W mutant of Staphylococcal nuclease and its 1-136 fragment.
    Eftink MR; Ionescu R; Ramsay GD; Wong CY; Wu JQ; Maki AH
    Biochemistry; 1996 Jun; 35(24):8084-94. PubMed ID: 8672513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of histidine 31 and tryptophan 34 in the structure, self-association, and folding of murine interleukin-6.
    Matthews JM; Ward LD; Hammacher A; Norton RS; Simpson RJ
    Biochemistry; 1997 May; 36(20):6187-96. PubMed ID: 9166791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histidyl and tyrosyl residue ionization studies of subtilisin Novo.
    Omar S; Brown MF; Silver P; Schleich T
    Biochim Biophys Acta; 1979 Jun; 578(2):261-8. PubMed ID: 39621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence energy transfer indicates similar transient and equilibrium intermediates in staphylococcal nuclease folding.
    Nishimura C; Riley R; Eastman P; Fink AL
    J Mol Biol; 2000 Jun; 299(4):1133-46. PubMed ID: 10843864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear magnetic resonance studies of the structure and binding sites of enzymes. XII. A conformational equilibrium in staphylococcal nuclease involving a histidine residue.
    Markley JL; Williams MN; Jardetzky O
    Proc Natl Acad Sci U S A; 1970 Mar; 65(3):645-51. PubMed ID: 5267145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance titration curves of histidine ring protons. Ribonuclease S-peptide and S-proteins.
    Shindo H; Cohen JS
    J Biol Chem; 1976 May; 251(9):2648-52. PubMed ID: 4455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of kinetics of formation of helices and hydrophobic core during the folding of staphylococcal nuclease from acid.
    Chen HM; Tsong TY
    Biophys J; 1994 Jan; 66(1):40-5. PubMed ID: 8130346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.