These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 4332414)

  • 1. Quantitation of N-acetyl-D-galactosamine-like sites on the surface membrane of normal and transformed mammalian cells.
    Sela BA; Lis H; Sharon N; Sachs L
    Biochim Biophys Acta; 1971 Dec; 249(2):564-8. PubMed ID: 4332414
    [No Abstract]   [Full Text] [Related]  

  • 2. Transformation of neuraminidase-treated lymphocytes by soybean agglutinin.
    Novogrodsky A; Katchalski E
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2515-8. PubMed ID: 4517665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of soybean agglutinin by normal and trypsin-treated red blood cells.
    Gordon JA; Sharon N; Lis H
    Biochim Biophys Acta; 1972 Apr; 264(2):387-91. PubMed ID: 5063740
    [No Abstract]   [Full Text] [Related]  

  • 4. Differences in the binding of fluorescent concanavalin A to the surface membrane of normal and transformed cells.
    Shoham J; Sachs L
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2479-82. PubMed ID: 4341697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential toxicity on normal and transformed cells in vitro and inhibition of tumour development in vivo by concanavalin A.
    Shoham J; Inbar M; Sachs L
    Nature; 1970 Sep; 227(5264):1244-6. PubMed ID: 4318127
    [No Abstract]   [Full Text] [Related]  

  • 6. Ultrastructural comparison between the distribution of concanavalin A and wheat germ agglutinin cell surface receptors of normal and transformed hamster and rat cell lines.
    Garrido J; Burglen MJ; Samolyk D; Wicker R; Bernhard W
    Cancer Res; 1974 Jan; 34(1):230-43. PubMed ID: 4358538
    [No Abstract]   [Full Text] [Related]  

  • 7. Enzymatic hydrolysis of uridine diphosphate-N-acetyl-D-galactosamine and uridine diphosphate-N-acetyl-D-glucosamine by normal cells, and blocks in this hydrolysis in transformed cells and their revertants.
    Sela BA; Lis H; Sachs L
    J Biol Chem; 1972 Dec; 247(23):7585-90. PubMed ID: 4344226
    [No Abstract]   [Full Text] [Related]  

  • 8. A specific metabolic activity on the surface membrane in malignant cell-transformation.
    Inbar M; Ben-Bassat H; Sachs L
    Proc Natl Acad Sci U S A; 1971 Nov; 68(11):2748-51. PubMed ID: 4330939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative binding of 125 I-concanavalin A to normal and transformed cells.
    Arndt-Jovin DJ; Berg P
    J Virol; 1971 Nov; 8(5):716-21. PubMed ID: 4332142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces.
    Nicolson GL; Blaustein J
    Biochim Biophys Acta; 1972 May; 266(2):543-7. PubMed ID: 4338881
    [No Abstract]   [Full Text] [Related]  

  • 11. Membrane changes associated with malignancy.
    Inbar M; Ben-Bassat H; Sachs L
    Nat New Biol; 1972 Mar; 236(61):3-4 passim. PubMed ID: 4336395
    [No Abstract]   [Full Text] [Related]  

  • 12. The carbohydrate content of control and virus-transformed cells.
    Hartmann JF; Buck CA; Defendi V; Glick MC; Warren L
    J Cell Physiol; 1972 Oct; 80(2):159-65. PubMed ID: 4344772
    [No Abstract]   [Full Text] [Related]  

  • 13. Cell contact-dependent increase in membrane D-galactopyranosyl-like residues on normal, but not virus- or spontaneously-transformed, murine fibroblasts.
    Nicolson GL; Lacorbiere M
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1672-6. PubMed ID: 4352648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkaline phosphatase activity and the regulation of growth in transformed mammalian cells.
    Sela BA; Sachs L
    J Cell Physiol; 1974 Feb; 83(1):27-34. PubMed ID: 4360296
    [No Abstract]   [Full Text] [Related]  

  • 15. Different cyclic changes in the surface membrane of normal and malignant transformed cells.
    Shoham J; Sachs L
    Exp Cell Res; 1974 Mar; 85(1):8-14. PubMed ID: 4363808
    [No Abstract]   [Full Text] [Related]  

  • 16. Availability of L-fucose-like sites on the surface membrane of normal and transformed mammalian cells.
    Inbar M; Vlodavsky I; Sachs L
    Biochim Biophys Acta; 1972 Feb; 255(2):703-8. PubMed ID: 5061934
    [No Abstract]   [Full Text] [Related]  

  • 17. Isolectins from wax bean with differential agglutination of normal and transformed mammalian cells.
    Sela BA; Lis H; Sharon N; Sachs L
    Biochim Biophys Acta; 1973 May; 310(1):273-7. PubMed ID: 4351063
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantitative interaction of Ricinus communis agglutinin and concanavalin A with influenza and vesicular stomatitis viruses and virus-infected normal and polyoma-transformed cells.
    Penhoet E; Olsen C; Carlson S; Lacorbiere M; Nicolson GL
    Biochemistry; 1974 Aug; 13(17):3561-6. PubMed ID: 4367428
    [No Abstract]   [Full Text] [Related]  

  • 19. Binding of radioactively labelled concanavalin A and wheat germ agglutinin to normal and virus-transformed cells.
    Ozanne B; Sambrook J
    Nat New Biol; 1971 Aug; 232(31):156-60. PubMed ID: 4328427
    [No Abstract]   [Full Text] [Related]  

  • 20. Ultrastructural localization of concanavalin A receptors in normal and SV 40 -transformed hamster and rat cells.
    Bretton R; Wicker R; Bernhard W
    Int J Cancer; 1972 Sep; 10(2):397-410. PubMed ID: 4122311
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.