BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 43326)

  • 1. Effect of dietary lactic acid on rumen lactate metabolism and blood acid-base status of lambs switched from low to high concentrate diets.
    Huntington GB; Britton RA
    J Anim Sci; 1979 Dec; 49(6):1569-76. PubMed ID: 43326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balance and urinary excretion of calcium, magnesium and phosphorus in response to high concentrate feeding and lactate infusion in lambs.
    Harmon DL; Britton RA
    J Anim Sci; 1983 Nov; 57(5):1306-15. PubMed ID: 6643321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro effect of pH variations on rumen fermentation, and in vivo effects of buffers in lambs before and after adaptation to high concentrate diets.
    Ha JK; Emerick RJ; Embry LB
    J Anim Sci; 1983 Mar; 56(3):698-706. PubMed ID: 6302060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of roughage particle size on ruminal, digestive and metabolic characteristics of early-weaned lambs fed pelleted corncob-concentrate diets.
    Kinser AR; Kerley MS; Fahey GC; Berger LL
    J Anim Sci; 1985 Aug; 61(2):514-24. PubMed ID: 2995301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose and lactate absorption and metabolic interrelationships in lambs switched from low to high concentrate diets.
    Huntington GB; Prior RL; Britton RA
    J Nutr; 1980 Sep; 110(9):1904-13. PubMed ID: 7411246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference, and milk fat profile of dairy cattle.
    Kmicikewycz AD; Harvatine KJ; Heinrichs AJ
    J Dairy Sci; 2015 Jul; 98(7):4850-68. PubMed ID: 25958273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiopeptin for the prevention of ovine lactic acidosis induced by diet change.
    Muir LA; Duquette PF; Rickes EL; Smith GE
    J Anim Sci; 1980 Nov; 51(5):1182-8. PubMed ID: 7204268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of diet forage:concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro.
    Baldwin RL; McLeod KR
    J Anim Sci; 2000 Mar; 78(3):771-83. PubMed ID: 10764086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of dietary cation-anion difference on ruminal metabolism and blood acid-base regulation in dairy cows receiving 2 contrasting levels of concentrate in diets.
    Apper-Bossard E; Faverdin P; Meschy F; Peyraud JL
    J Dairy Sci; 2010 Sep; 93(9):4196-210. PubMed ID: 20723694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alfalfa pellet-induced subacute ruminal acidosis in dairy cows increases bacterial endotoxin in the rumen without causing inflammation.
    Khafipour E; Krause DO; Plaizier JC
    J Dairy Sci; 2009 Apr; 92(4):1712-24. PubMed ID: 19307653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchrony of nutrient supply to the rumen and dietary energy source and their effects on the growth and metabolism of lambs.
    Richardson JM; Wilkinson RG; Sinclair LA
    J Anim Sci; 2003 May; 81(5):1332-47. PubMed ID: 12772862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of change of diet on the mineral composition of rumen fluid, on magnesium metabolism and on water balance in sheep.
    Johnson CL; Aubrey Jones DA
    Br J Nutr; 1989 May; 61(3):583-94. PubMed ID: 2758012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feed intake, rumen fluid volume and turnover, nitrogen and mineral balance and acid-base status of wethers changed from low to high concentrate diets.
    Huntington GB; Britton RA; Prior RL
    J Anim Sci; 1981 Jun; 52(6):1376-87. PubMed ID: 7298525
    [No Abstract]   [Full Text] [Related]  

  • 14. Nutrient utilization in lambs fed diets high in sodium or potassium.
    Reffett JK; Boling JA
    J Anim Sci; 1985 Oct; 61(4):1004-9. PubMed ID: 4066532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet.
    Kenney NM; Vanzant ES; Harmon DL; McLeod KR
    J Anim Sci; 2015 May; 93(5):2336-48. PubMed ID: 26020329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of lactic acid isomers in the rumen of silage-fed sheep.
    Gill M; Siddons RC; Beever DE; Rowe JB
    Br J Nutr; 1986 Mar; 55(2):399-407. PubMed ID: 3676167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limiting amino acids for growing lambs fed a diet low in ruminally undegradable protein.
    van E Nolte J; Löest CA; Ferreira AV; Waggoner JW; Mathis CP
    J Anim Sci; 2008 Oct; 86(10):2627-41. PubMed ID: 18539837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate.
    Commun L; Mialon MM; Martin C; Baumont R; Veissier I
    J Anim Sci; 2009 Oct; 87(10):3372-9. PubMed ID: 19574575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of essential oils, yeast culture and malate on rumen fermentation, blood metabolites, growth performance and nutrient digestibility of Baluchi lambs fed high-concentrate diets.
    Malekkhahi M; Tahmasbi AM; Naserian AA; Danesh Mesgaran M; Kleen JL; Parand AA
    J Anim Physiol Anim Nutr (Berl); 2015 Apr; 99(2):221-9. PubMed ID: 25060172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of protein supplementation on expression and distribution of urea transporter-B in lambs fed low-quality forage.
    Ludden PA; Stohrer RM; Austin KJ; Atkinson RL; Belden EL; Harlow HJ
    J Anim Sci; 2009 Apr; 87(4):1354-65. PubMed ID: 18952724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.