These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 4334147)

  • 1. Phosphate transport in Escherichia coli.
    Medveczky N; Rosenberg H
    Biochim Biophys Acta; 1971 Aug; 241(2):494-506. PubMed ID: 4334147
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphate transport in Bacillus cereus.
    Rosenberg H; Medveczky N; La Nauze JM
    Biochim Biophys Acta; 1969 Oct; 193(1):159-67. PubMed ID: 4310720
    [No Abstract]   [Full Text] [Related]  

  • 3. Coupled transport of citrate and magnesium in Bacillus subtilis.
    Willecke K; Gries EM; Oehr P
    J Biol Chem; 1973 Feb; 248(3):807-14. PubMed ID: 4630854
    [No Abstract]   [Full Text] [Related]  

  • 4. Linked transport of phosphate, potassium ions and protons in Escherichia coli.
    Russell LM; Rosenberg H
    Biochem J; 1979 Oct; 184(1):13-21. PubMed ID: 43137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cations and protons on the kinetics of substrate uptake in rat liver mitochondria.
    Meisner H; Palmieri F; Quagliariello E
    Biochemistry; 1972 Mar; 11(6):949-55. PubMed ID: 5013818
    [No Abstract]   [Full Text] [Related]  

  • 6. The isolation of a mutant of Bacillus cereus deficient in phosphate uptake.
    Rosenberg H; La Nauze JM
    Biochim Biophys Acta; 1968 Mar; 156(2):381-8. PubMed ID: 4295991
    [No Abstract]   [Full Text] [Related]  

  • 7. Arsenate resistant mutants of Escherichia coli and phosphate transport.
    Bennett RL; Malamy MH
    Biochem Biophys Res Commun; 1970 Jul; 40(2):496-503. PubMed ID: 4919964
    [No Abstract]   [Full Text] [Related]  

  • 8. Uncoupler and anaerobic resistant transport of phosphate in Escherichia coli.
    Rae AS; Strickland KP
    Biochem Biophys Res Commun; 1975 Feb; 62(3):568-76. PubMed ID: 1091263
    [No Abstract]   [Full Text] [Related]  

  • 9. Flip-flop mechanisms in enzymology. A model: the alkaline phosphatase of Escherichia coli.
    Lazdunski M; Petitclerc C; Chappelet D; Lazdunski C
    Eur J Biochem; 1971 May; 20(1):124-39. PubMed ID: 4325354
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy-linked transport of permeant ions in Escherichia coli cells: evidence for membrane potential generation by proton-pump.
    Griniuviene B; Chmieliauskaite V; Grinius L
    Biochem Biophys Res Commun; 1974 Jan; 56(1):206-13. PubMed ID: 4595971
    [No Abstract]   [Full Text] [Related]  

  • 11. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts.
    Kovac L; Groot GS; Racker E
    Biochim Biophys Acta; 1972 Jan; 256(1):55-65. PubMed ID: 4550631
    [No Abstract]   [Full Text] [Related]  

  • 12. Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium.
    Munro GF; Hercules K; Morgan J; Sauerbier W
    J Biol Chem; 1972 Feb; 247(4):1272-80. PubMed ID: 4551516
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy coupling in the uptake of hexose phosphates by Escherichia coli.
    Essenberg RC; Kornberg HL
    J Biol Chem; 1975 Feb; 250(3):939-45. PubMed ID: 46228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of ribonucleic acid accumulation in vivo by nucleoside triphosphates.
    Nazar RN; Tyfield LA; Wong JT
    J Biol Chem; 1972 Feb; 247(3):798-804. PubMed ID: 4550761
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on (Na + -K + )-activated ATPase. XXX. Cation transport in Escherichia coli.
    Hafkenscheid JC; Bonting SL
    Comp Biochem Physiol B; 1971 Aug; 39(4):955-61. PubMed ID: 4257184
    [No Abstract]   [Full Text] [Related]  

  • 16. Energy coupling of the -methylgalactoside transport system of Escherichia coli.
    Parnes JR; Boos W
    J Biol Chem; 1973 Jun; 248(12):4429-35. PubMed ID: 4268122
    [No Abstract]   [Full Text] [Related]  

  • 17. Transport of sugars and amino acids in bacteria. 3. Studies on the restoration of active transport.
    Anraku Y
    J Biol Chem; 1968 Jun; 243(11):3128-35. PubMed ID: 4871203
    [No Abstract]   [Full Text] [Related]  

  • 18. Dehydrogenase activity involved in the uptake of glucose 6-phosphate by a bacterial membrane system.
    Dietz GW
    J Biol Chem; 1972 Jul; 247(14):4561-5. PubMed ID: 4557845
    [No Abstract]   [Full Text] [Related]  

  • 19. -Galactoside accumulation in a Mg 2+ -,Ca 2+ -activated ATPase deficient mutant of E.coli.
    Schairer HU; Haddock BA
    Biochem Biophys Res Commun; 1972 Aug; 48(3):544-51. PubMed ID: 4261724
    [No Abstract]   [Full Text] [Related]  

  • 20. Activation of Rb + and Na + uptake into yeast by monovalent cations.
    Borst-Pauwels GW; Schnetkamp P; van Well P
    Biochim Biophys Acta; 1973 Jan; 291(1):274-9. PubMed ID: 4567763
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.