These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 4334284)

  • 41. Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD(+)-specific isocitrate dehydrogenase.
    Lin AP; McCammon MT; McAlister-Henn L
    Biochemistry; 2001 Nov; 40(47):14291-301. PubMed ID: 11714283
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The unidirectional inhibition of glutamate dehydrogenase from Blastocladiella emersonii.
    Sanner T
    Biochim Biophys Acta; 1972 Mar; 258(3):689-700. PubMed ID: 4622834
    [No Abstract]   [Full Text] [Related]  

  • 43. Polymeric forms of yeast nicotinamide-adenine dinucleotide-specific isocitrate dehydrogenase in the presence of various ligands.
    König G; Razzoli L; Astancolle S; Cennamo C
    Ital J Biochem; 1977; 26(6):473-86. PubMed ID: 204607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Substrate independence of molecular weight of triphosphopyridine nucleotide-specific isocitrate dehydrogenase.
    Colman RF
    J Biol Chem; 1972 Oct; 247(20):6727-9. PubMed ID: 4403968
    [No Abstract]   [Full Text] [Related]  

  • 45. Functional groups of diphosphopyridine nucleotide linked isocitrate dehydrogenase from bovine heart. II. Studies of an active amino group by reaction with aldehydes.
    Fan CC; Plaut GW
    Biochemistry; 1974 Jan; 13(1):52-9. PubMed ID: 4357658
    [No Abstract]   [Full Text] [Related]  

  • 46. A role for the pyridine nitrogen of reduced triphosphopyridine-nucleotide in the mechanism of action of isocitrate dehydrogenase.
    Rippa M; Signorini M; Dallochio F
    FEBS Lett; 1974 Feb; 39(1):24-6. PubMed ID: 4152751
    [No Abstract]   [Full Text] [Related]  

  • 47. DPN-SPECIFIC ISOCITRATE-DEHYDROGENASE OF MITOCHONDRIA. II. PH-DEPENDENCE OF THE KINETICS AND THE MECHANISM OF ACTIVATION.
    KLINGENBERG M; GOEBELL H; WENSKE G
    Biochem Z; 1965 Feb; 341():199-223. PubMed ID: 14262437
    [No Abstract]   [Full Text] [Related]  

  • 48. Structural requirements for the binding of AMP to the allosteric site of NAD-specific isocitrate dehydrogenase from bakers' yeast.
    Gabriel JL; Plaut GW
    Biochemistry; 1990 Apr; 29(14):3528-35. PubMed ID: 2162196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulatory properties of a plant NAD: isocitrate dehydrogenase. The effect of inorganic ions.
    Coultate TP; Dennis DT
    Eur J Biochem; 1969 Jan; 7(2):153-8. PubMed ID: 4303910
    [No Abstract]   [Full Text] [Related]  

  • 50. Kinetic behaviour of NAD plus-specific isocitrate dehydrogenase from baker's yeast and inhibition by AMP.
    Cennamo C; Razzoli L; Ferrari F
    Ital J Biochem; 1970; 19(2):100-10. PubMed ID: 4321020
    [No Abstract]   [Full Text] [Related]  

  • 51. Allosteric inhibition of NAD+-specific isocitrate dehydrogenase by a mitochondrial mRNA.
    Anderson SL; Minard KI; McAlister-Henn L
    Biochemistry; 2000 May; 39(19):5623-9. PubMed ID: 10801312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alkylation of cysteinyl residues of pig heart NAD-specific isocitrate dehydrogenase by iodoacetate.
    Mauck L; Colman RF
    Biochim Biophys Acta; 1976 Apr; 429(2):301-15. PubMed ID: 4125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. KINETICS OF REGULATORY ENZYMES. KINETIC ORDER OF THE YEAST DIPHOSPHOPYRIDINE NUCLEOTIDE ISOCITRATE DEHYDROGENASE REACTION AND A MODEL FOR THE REACTION.
    ATKINSON DE; HATHAWAY JA; SMITH EC
    J Biol Chem; 1965 Jun; 240():2682-90. PubMed ID: 14304886
    [No Abstract]   [Full Text] [Related]  

  • 54. Formyltetrahydrofolate synthetase. Binding of adenosine triphosphate and related ligands determined by partition equilibrium.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1971 Nov; 246(22):6942-52. PubMed ID: 5126227
    [No Abstract]   [Full Text] [Related]  

  • 55. A glutamyl residue in the active site of triphosphopyridine nucleotide-dependent isocitrate dehydrogenase of pig heart.
    Colman RF
    J Biol Chem; 1973 Dec; 248(23):8137-43. PubMed ID: 4148100
    [No Abstract]   [Full Text] [Related]  

  • 56. Multinuclear NMR studies of the divalent metal binding site of NADP-dependent isocitrate dehydrogenase from pig heart.
    Ehrlich RS; Colman RF
    Biochemistry; 1989 Mar; 28(5):2058-65. PubMed ID: 2541772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proton relaxation and kinetic studies of ternary complexes of an allosteric pyruvate kinase from yeast.
    Cottam GL; Mildvan AS; Hunsley JR; Suelter CH
    J Biol Chem; 1972 Jun; 247(12):3802-9. PubMed ID: 4555950
    [No Abstract]   [Full Text] [Related]  

  • 58. The proton-translocating nicotinamide-adenine dinucleotide (phosphate) transhydrogenase of rat liver mitochondria.
    Moyle J; Mitchell P
    Biochem J; 1973 Mar; 132(3):571-85. PubMed ID: 4146799
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formyltetrahydrofolate synthetase. Substrate binding to monomeric subunits.
    Curthoys NP; D'Ari Straus L; Rabinowitz JC
    Biochemistry; 1972 Feb; 11(3):345-9. PubMed ID: 5059116
    [No Abstract]   [Full Text] [Related]  

  • 60. Role of metal ions in reactions catalyzed by pig heart triphosphopyridine nucleotide-dependent isocitrate dehydrogenase. I. Magnetic resonance and binding studies of the complexes of enzyme, manganous ion, and substrates.
    Villafranca JJ; Colman RF
    J Biol Chem; 1972 Jan; 247(1):209-14. PubMed ID: 4401582
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.