BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 43347)

  • 1. [Mechanism and control of fatty acid biosynthesis (author's transl)].
    Seyama Y; Kawaguchi A
    Seikagaku; 1979 Oct; 51(10):1127-38. PubMed ID: 43347
    [No Abstract]   [Full Text] [Related]  

  • 2. Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes.
    Seyama Y; Kasama T; Yamakawa T; Kawaguchi A; Okuda S
    J Biochem; 1977 Apr; 81(4):1167-73. PubMed ID: 18449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential hydrogen exchange during the fatty acid synthetase reaction: deuterium distribution of fatty acids synthesized from [2-2H2]malonyl-CoA.
    Saito K; Kawaguchi A; Nozoe S; Seyama Y; Okuda S
    Biochem Biophys Res Commun; 1982 Oct; 108(3):995-1001. PubMed ID: 6758778
    [No Abstract]   [Full Text] [Related]  

  • 4. Propionyl-Coa induced synthesis of even-chain-length fatty acids by fatty acid synthetase from Brevibacterium ammoniagenes.
    Arai K; Kawaguchi A; Saito Y; Koike N; Seyama Y; Yamakawa T; Okuda S
    J Biochem; 1982 Jan; 91(1):11-8. PubMed ID: 7068555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate control of termination of fatty acid biosynthesis by fatty acid synthetase from Brevibacterium ammoniagenes.
    Kawaguchi A; Arai K; Seyama Y; Yamakawa T; Okuda S
    J Biochem; 1980 Aug; 88(2):303-6. PubMed ID: 7419496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Fatty acid synthetase].
    Ikai A
    Tanpakushitsu Kakusan Koso; 1993 May; 38(7):1100-8. PubMed ID: 8337382
    [No Abstract]   [Full Text] [Related]  

  • 7. Stereochemical studies of hydrogen incorporation from nucleotides with fatty acid synthetase from Brevibacterium ammoniagenes.
    Seyama Y; Kasama T; Yamakawa T; Kawaguchi A; Okuda S
    Adv Exp Med Biol; 1978; 101():37-43. PubMed ID: 27069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steric course of deuterium incorporation from [2-2H2]malonyl-CoA into fatty acids by fatty acid synthetases.
    Saito K; Kawaguchi A; Seyama Y; Yamakawa T; Okuda S
    J Biochem; 1981 Dec; 90(6):1697-704. PubMed ID: 7037760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature- and growth-phase-dependent changes in membrane fatty acid compositions of Brevibacterium ammoniagenes.
    Oh-Hashi Y; Kawaguchi A; Seyama Y; Okuyama H
    Arch Biochem Biophys; 1986 Jul; 248(1):440-3. PubMed ID: 3729431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible contribution of [2-3H]malate and [2, 3-3h]succinate tritium to the same tritiated NADPH pool for participation in fatty acid synthesis.
    Rous S
    Biochimie; 1978; 60(2):111-7. PubMed ID: 27240
    [No Abstract]   [Full Text] [Related]  

  • 11. Fatty acid biosynthesis in the peripheral nervous system of normal and Trembler mice.
    Cassagne C; Sargueil-Boiron F; Heape MA
    Biochim Biophys Acta; 1986 Feb; 875(3):633-40. PubMed ID: 3947661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex.
    Kawaguchi A; Okuda S
    Proc Natl Acad Sci U S A; 1977 Aug; 74(8):3180-3. PubMed ID: 20622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of hydrogen in fatty acid synthesis.
    Rous S
    Adv Lipid Res; 1971; 9():73-118. PubMed ID: 4398685
    [No Abstract]   [Full Text] [Related]  

  • 14. Synthesis of multimethyl-branched fatty acids by avian and mammalian fatty acid synthetase and its regulation by malonyl-CoA decarboxylase in the uropygial gland.
    Buckner JS; Kolattukudy PE; Rogers L
    Arch Biochem Biophys; 1978 Feb; 186(1):152-63. PubMed ID: 629531
    [No Abstract]   [Full Text] [Related]  

  • 15. Biochemical properties of cytochrome b5-dependent microsomal fatty acid elongation and identification of products.
    Keyes SR; Cinti DL
    J Biol Chem; 1980 Dec; 255(23):11357-64. PubMed ID: 7440546
    [No Abstract]   [Full Text] [Related]  

  • 16. Modification of mammalian fatty acid synthetase activity by NADP.
    Smith S; Linn T; Stern A
    FEBS Lett; 1985 Sep; 189(2):231-4. PubMed ID: 4043381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site organization of bacterial type I fatty acid synthetase.
    Morishima N; Ikai A
    J Biochem; 1987 Dec; 102(6):1451-7. PubMed ID: 3448090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of the biosynthesis of fatty acids and fatty alcohols.
    Rock CO; Fitzgerald V; Snyder F
    Arch Biochem Biophys; 1978 Feb; 186(1):77-83. PubMed ID: 24423
    [No Abstract]   [Full Text] [Related]  

  • 19. Some characteristics of soluble fatty acid synthesis in germinating pea seeds.
    Bolton P; Harwood JL
    Biochim Biophys Acta; 1977 Oct; 489(1):15-24. PubMed ID: 20971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating effect of β-ketoacyl synthase domain of fatty acid synthase on fatty acyl chain length in de novo fatty acid synthesis.
    Cui W; Liang Y; Tian W; Ji M; Ma X
    Biochim Biophys Acta; 2016 Mar; 1861(3):149-55. PubMed ID: 26680361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.